Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModel, AutoTokenizer
|
3 |
from PIL import Image
|
4 |
-
import torch
|
5 |
|
6 |
# Check CUDA availability
|
7 |
def check_cuda():
|
@@ -14,41 +14,35 @@ def check_cuda():
|
|
14 |
# Load the tokenizer and model
|
15 |
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
|
16 |
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, device_map="auto", use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
|
17 |
-
model.eval()
|
18 |
|
19 |
# Define the OCR function
|
20 |
-
def perform_ocr(image
|
21 |
# Check for CUDA availability and print the result
|
22 |
cuda_info = check_cuda()
|
23 |
-
print(cuda_info)
|
24 |
|
25 |
-
# Convert PIL image to RGB format
|
26 |
if image.mode != "RGB":
|
27 |
image = image.convert("RGB")
|
28 |
|
|
|
|
|
|
|
|
|
29 |
# Perform OCR using the model
|
30 |
-
res = model.chat(tokenizer,
|
31 |
|
32 |
-
|
33 |
-
if keyword.lower() in res.lower():
|
34 |
-
return res, f'Keyword "{keyword}" found in the text.'
|
35 |
-
else:
|
36 |
-
return res, f'Keyword "{keyword}" not found in the text.'
|
37 |
|
38 |
# Define the Gradio interface
|
39 |
interface = gr.Interface(
|
40 |
fn=perform_ocr,
|
41 |
-
inputs=
|
42 |
-
|
43 |
-
gr.Textbox(label="Enter Keyword to Search")
|
44 |
-
],
|
45 |
-
outputs=[
|
46 |
-
gr.Textbox(label="Extracted Text"),
|
47 |
-
gr.Textbox(label="Search Result")
|
48 |
-
],
|
49 |
title="OCR and Document Search Web Application",
|
50 |
-
description="Upload an image to extract text using the GOT-OCR2_0 model
|
51 |
)
|
52 |
|
53 |
# Launch the Gradio app
|
54 |
-
interface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModel, AutoTokenizer
|
3 |
from PIL import Image
|
4 |
+
import torch # Importing torch to check CUDA availability
|
5 |
|
6 |
# Check CUDA availability
|
7 |
def check_cuda():
|
|
|
14 |
# Load the tokenizer and model
|
15 |
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
|
16 |
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, device_map="auto", use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
|
17 |
+
model = model.eval() # No need for .cuda() with device_map="auto"
|
18 |
|
19 |
# Define the OCR function
|
20 |
+
def perform_ocr(image):
|
21 |
# Check for CUDA availability and print the result
|
22 |
cuda_info = check_cuda()
|
23 |
+
print(cuda_info) # This will be logged in the output
|
24 |
|
25 |
+
# Convert PIL image to RGB format (if necessary)
|
26 |
if image.mode != "RGB":
|
27 |
image = image.convert("RGB")
|
28 |
|
29 |
+
# Save the image to a temporary path
|
30 |
+
image_file_path = 'temp_image.jpg'
|
31 |
+
image.save(image_file_path)
|
32 |
+
|
33 |
# Perform OCR using the model
|
34 |
+
res = model.chat(tokenizer, image_file_path, ocr_type='ocr')
|
35 |
|
36 |
+
return res
|
|
|
|
|
|
|
|
|
37 |
|
38 |
# Define the Gradio interface
|
39 |
interface = gr.Interface(
|
40 |
fn=perform_ocr,
|
41 |
+
inputs=gr.Image(type="pil", label="Upload Image"),
|
42 |
+
outputs=gr.Textbox(label="Extracted Text"),
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
title="OCR and Document Search Web Application",
|
44 |
+
description="Upload an image to extract text using the GOT-OCR2_0 model."
|
45 |
)
|
46 |
|
47 |
# Launch the Gradio app
|
48 |
+
interface.launch()
|