import streamlit as st from phi.agent import Agent from phi.model.google import Gemini from phi.tools.duckduckgo import DuckDuckGo from google.generativeai import upload_file,get_file import google.generativeai as genai import time from pathlib import Path import tempfile from dotenv import load_dotenv load_dotenv() import os API_KEY=os.getenv("GOOGLE_API_KEY") if API_KEY: genai.configure(api_key=API_KEY) # Page configuration st.set_page_config( page_title="Multimodal AI Agent- Video Summarizer", page_icon="🎥", layout="wide" ) st.title("Phidata Video AI Summarizer Agent 🎥🎤🖬") st.header("Powered by Gemini 2.0 Flash Exp") @st.cache_resource def initialize_agent(): return Agent( name="Video AI Summarizer", model=Gemini(id="gemini-2.0-flash-exp"), tools=[DuckDuckGo()], markdown=True, ) ## Initialize the agent multimodal_Agent=initialize_agent() # File uploader video_file = st.file_uploader( "Upload a video file", type=['mp4', 'mov', 'avi'], help="Upload a video for AI analysis" ) if video_file: with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_video: temp_video.write(video_file.read()) video_path = temp_video.name st.video(video_path, format="video/mp4", start_time=0) user_query = st.text_area( "What insights are you seeking from the video?", placeholder="Ask anything about the video content. The AI agent will analyze and gather additional context if needed.", help="Provide specific questions or insights you want from the video." ) if st.button("🔍 Analyze Video", key="analyze_video_button"): if not user_query: st.warning("Please enter a question or insight to analyze the video.") else: try: with st.spinner("Processing video and gathering insights..."): # Upload and process video file processed_video = upload_file(video_path) while processed_video.state.name == "PROCESSING": time.sleep(1) processed_video = get_file(processed_video.name) # Prompt generation for analysis analysis_prompt = ( f""" Analyze the uploaded video for content and context. Respond to the following query using video insights and supplementary web research: {user_query} Provide a detailed, user-friendly, and actionable response. """ ) # AI agent processing response = multimodal_Agent.run(analysis_prompt, videos=[processed_video]) # Display the result st.subheader("Analysis Result") st.markdown(response.content) except Exception as error: st.error(f"An error occurred during analysis: {error}") finally: # Clean up temporary video file Path(video_path).unlink(missing_ok=True) else: st.info("Upload a video file to begin analysis.") # Customize text area height st.markdown( """ """, unsafe_allow_html=True )