{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Identified food: Granny Smith\n" ] } ], "source": [ "import torch\n", "from PIL import Image\n", "from transformers import ViTFeatureExtractor, ViTForImageClassification\n", "import warnings\n", "\n", "warnings.filterwarnings('ignore')\n", "\n", "model_name = \"google/vit-base-patch16-224\"\n", "feature_extractor = ViTFeatureExtractor.from_pretrained(model_name)\n", "model = ViTForImageClassification.from_pretrained(model_name)\n", "\n", "def identify_food(image_path):\n", " \"\"\"Identify the food item in the image.\"\"\"\n", " image = Image.open(image_path)\n", " inputs = feature_extractor(images=image, return_tensors=\"pt\")\n", " outputs = model(**inputs)\n", " logits = outputs.logits\n", " predicted_class_idx = logits.argmax(-1).item()\n", " predicted_label = model.config.id2label[predicted_class_idx]\n", " food_name = predicted_label.split(',')[0]\n", " return food_name\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "myenv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.4" } }, "nbformat": 4, "nbformat_minor": 2 }