import streamlit as st from PyPDF2 import PdfReader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_google_genai import GoogleGenerativeAIEmbeddings, ChatGoogleGenerativeAI from langchain_community.vectorstores import FAISS # Updated import from langchain.chains.question_answering import load_qa_chain from langchain.prompts import PromptTemplate from dotenv import load_dotenv import os import google.generativeai as genai load_dotenv() # Configure Generative AI API key genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) def get_pdf_text(pdf_docs): """Extract text from PDF documents.""" text = "" for pdf in pdf_docs: pdf_reader = PdfReader(pdf) for page in pdf_reader.pages: text += page.extract_text() return text def get_text_chunks(text): """Split text into manageable chunks.""" text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000) chunks = text_splitter.split_text(text) return chunks def get_vector_store(text_chunks): """Generate embeddings and create FAISS index.""" embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001") vector_store = FAISS.from_texts(text_chunks, embedding=embeddings) vector_store.save_local("faiss_index") def get_conversational_chain(): """Load conversational chain for question answering.""" prompt_template = """ Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n Context:\n {context}?\n Question: \n{question}\n Answer: """ model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3) prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) return chain def user_input(user_question): """Process user input and generate response.""" embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001") # Load FAISS index with the necessary flag new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True) docs = new_db.similarity_search(user_question) # Load conversational chain chain = get_conversational_chain() # Generate response response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True) return response["output_text"] def main(): """Main Streamlit application function.""" st.set_page_config("Chat PDF") st.header("📄📄 Chat with Multi_PDFs 📄📄") user_question = st.text_input("Ask a Question from the PDF Files") if user_question: response = user_input(user_question) st.write("Reply: ", response) with st.sidebar: st.title("Menu:") pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True) if st.button("Submit & Process"): with st.spinner("Processing..."): raw_text = get_pdf_text(pdf_docs) text_chunks = get_text_chunks(raw_text) get_vector_store(text_chunks) st.success("Done") if __name__ == "__main__": main()