import torch from PIL import Image from utils import * import torch.nn.functional as F import numpy as np def get_3angle(image, dino, val_preprocess, device): # image = Image.open(image_path).convert('RGB') image_inputs = val_preprocess(images = image) image_inputs['pixel_values'] = torch.from_numpy(np.array(image_inputs['pixel_values'])).to(device) with torch.no_grad(): dino_pred = dino(image_inputs) gaus_ax_pred = torch.argmax(dino_pred[:, 0:360], dim=-1) gaus_pl_pred = torch.argmax(dino_pred[:, 360:360+180], dim=-1) gaus_ro_pred = torch.argmax(dino_pred[:, 360+180:360+180+180], dim=-1) confidence = F.softmax(dino_pred[:, -2:], dim=-1)[0][0] angles = torch.zeros(4) angles[0] = gaus_ax_pred angles[1] = gaus_pl_pred - 90 angles[2] = gaus_ro_pred - 90 angles[3] = confidence return angles def get_3angle_infer_aug(origin_img, rm_bkg_img, dino, val_preprocess, device): # image = Image.open(image_path).convert('RGB') image = get_crop_images(origin_img, num=3) + get_crop_images(rm_bkg_img, num=3) image_inputs = val_preprocess(images = image) image_inputs['pixel_values'] = torch.from_numpy(np.array(image_inputs['pixel_values'])).to(device) with torch.no_grad(): dino_pred = dino(image_inputs) gaus_ax_pred = torch.argmax(dino_pred[:, 0:360], dim=-1).to(torch.float32) gaus_pl_pred = torch.argmax(dino_pred[:, 360:360+180], dim=-1).to(torch.float32) gaus_ro_pred = torch.argmax(dino_pred[:, 360+180:360+180+180], dim=-1).to(torch.float32) gaus_ax_pred = remove_outliers_and_average_circular(gaus_ax_pred) gaus_pl_pred = remove_outliers_and_average(gaus_pl_pred) gaus_ro_pred = remove_outliers_and_average(gaus_ro_pred) confidence = torch.mean(F.softmax(dino_pred[:, -2:], dim=-1), dim=0)[0] angles = torch.zeros(4) angles[0] = gaus_ax_pred angles[1] = gaus_pl_pred - 90 angles[2] = gaus_ro_pred - 90 angles[3] = confidence return angles