parth parekh commited on
Commit
e43c18e
·
1 Parent(s): 008262f

added more workers

Browse files
Files changed (2) hide show
  1. Dockerfile +1 -1
  2. test.py +17 -6
Dockerfile CHANGED
@@ -25,4 +25,4 @@ RUN chown -R user:user /app
25
  # Switch to the new user
26
  USER user
27
 
28
- CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
 
25
  # Switch to the new user
26
  USER user
27
 
28
+ CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860", "--workers", "4"]
test.py CHANGED
@@ -103,16 +103,20 @@ test_texts = [
103
  "For my number, follow the clues hidden in Da Vinci's most famous painting."
104
 
105
  ]
 
106
 
107
  url = "https://vidhitmakvana1-contact-sharing-recognizer-api.hf.space/detect_contact"
108
 
109
  async def process_text(session, text):
110
  payload = {"text": text}
111
  headers = {"Content-Type": "application/json"}
112
-
 
113
  async with session.post(url, data=json.dumps(payload), headers=headers) as response:
114
  if response.status == 200:
115
  result = await response.json()
 
 
116
  return result
117
  else:
118
  print(f"Error for text: {text}")
@@ -124,23 +128,30 @@ async def main():
124
  async with aiohttp.ClientSession() as session:
125
  tasks = [process_text(session, text) for text in test_texts]
126
  results = await tqdm.gather(*tasks)
127
-
128
  correct_predictions = 0
129
  total_predictions = len(results)
130
-
 
131
  for text, result in zip(test_texts, results):
132
  if result:
133
  print(f"Text: {result['text']}")
134
  print(f"Contact Probability: {result['contact_probability']:.4f}")
135
  print(f"Is Contact Info: {result['is_contact_info']}")
 
136
  print("---")
137
-
138
  # Assuming all texts in test_texts are actually contact information
139
  if result['is_contact_info']:
140
  correct_predictions += 1
141
-
 
 
142
  accuracy = correct_predictions / total_predictions
 
143
  print(f"Accuracy: {accuracy:.2f}")
 
144
 
145
  if __name__ == "__main__":
146
- asyncio.run(main())
 
 
103
  "For my number, follow the clues hidden in Da Vinci's most famous painting."
104
 
105
  ]
106
+ import time
107
 
108
  url = "https://vidhitmakvana1-contact-sharing-recognizer-api.hf.space/detect_contact"
109
 
110
  async def process_text(session, text):
111
  payload = {"text": text}
112
  headers = {"Content-Type": "application/json"}
113
+
114
+ start_time = time.time()
115
  async with session.post(url, data=json.dumps(payload), headers=headers) as response:
116
  if response.status == 200:
117
  result = await response.json()
118
+ end_time = time.time()
119
+ result['response_time'] = end_time - start_time
120
  return result
121
  else:
122
  print(f"Error for text: {text}")
 
128
  async with aiohttp.ClientSession() as session:
129
  tasks = [process_text(session, text) for text in test_texts]
130
  results = await tqdm.gather(*tasks)
131
+
132
  correct_predictions = 0
133
  total_predictions = len(results)
134
+ total_response_time = 0
135
+
136
  for text, result in zip(test_texts, results):
137
  if result:
138
  print(f"Text: {result['text']}")
139
  print(f"Contact Probability: {result['contact_probability']:.4f}")
140
  print(f"Is Contact Info: {result['is_contact_info']}")
141
+ print(f"Response Time: {result['response_time']:.4f} seconds")
142
  print("---")
143
+
144
  # Assuming all texts in test_texts are actually contact information
145
  if result['is_contact_info']:
146
  correct_predictions += 1
147
+
148
+ total_response_time += result['response_time']
149
+
150
  accuracy = correct_predictions / total_predictions
151
+ average_response_time = total_response_time / total_predictions
152
  print(f"Accuracy: {accuracy:.2f}")
153
+ print(f"Average Response Time: {average_response_time:.4f} seconds")
154
 
155
  if __name__ == "__main__":
156
+ while True:
157
+ asyncio.run(main())