import streamlit as st import plotly.express as px #from pycaret.regression import setup, compare_models, pull, save_model, load_model import pandas_profiling from pycaret.classification import * import pandas as pd from streamlit_pandas_profiling import st_profile_report import os if os.path.exists('./dataset.csv'): df = pd.read_csv('dataset.csv', index_col=None) else: df = pd.DataFrame() # default dataframe if one has not been provided with st.sidebar: st.image("https://www.onepointltd.com/wp-content/uploads/2020/03/inno2.png") st.title("OperationalML") choice = st.radio("Navigation", ["Upload","Profiling","Modelling", "Download"]) st.info("This project application helps you build and explore your data.") if choice == "Upload": st.title("Upload Your Dataset") file = st.file_uploader("Upload Your Dataset") if file: df = pd.read_csv(file, index_col=None) df.to_csv('dataset.csv', index=None) st.dataframe(df) if choice == "Profiling": st.title("Exploratory Data Analysis") profile_df = df.profile_report() st_profile_report(profile_df) if choice == "Modelling": chosen_target = st.selectbox('Choose the Target Column', df.columns) if chosen_target and st.button('Run Modelling'): setup(df, target=chosen_target, silent=True) setup_df=pull() best_model = compare_models() compare_df = pull() save_model(best_model, 'best_model') st.dataframe(compare_df) if choice == "Download": if os.path.exists('best_model.pkl'): with open('best_model.pkl', 'rb') as f: st.download_button('Download Model', f, file_name="best_model.pkl") else: st.warning("No model has been saved yet. Please run modelling first.")