File size: 7,854 Bytes
fe30080 49a6c17 fe30080 49a6c17 fe30080 49a6c17 fe30080 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import gradio as gr
# import os, subprocess, torchaudio
# import torch
from PIL import Image
from gtts import gTTS
import tempfile
from pydub import AudioSegment
from pydub.generators import Sine
# from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
# from fairseq.models.text_to_speech.hub_interface import TTSHubInterface
import soundfile
import dlib
import cv2
import imageio
import os
import gradio as gr
import os, subprocess, torchaudio
from PIL import Image
import ffmpeg
block = gr.Blocks()
def merge_frames():
path = '/content/video_results/restored_imgs'
image_folder = os.fsencode(path)
print(image_folder)
filenames = []
for file in os.listdir(image_folder):
filename = os.fsdecode(file)
if filename.endswith( ('.jpg', '.png', '.gif') ):
filenames.append(filename)
filenames.sort() # this iteration technique has no built in order, so sort the frames
images = list(map(lambda filename: imageio.imread("/content/video_results/restored_imgs/"+filename), filenames))
imageio.mimsave('/content/video_output.mp4', images, fps=25.0) # modify the frame duration as needed
block = gr.Blocks()
def audio_video():
input_video = ffmpeg.input('/content/video_output.mp4')
input_audio = ffmpeg.input('/content/audio.wav')
ffmpeg.concat(input_video, input_audio, v=1, a=1).output('final_output.mp4').run()
def compute_aspect_preserved_bbox(bbox, increase_area, h, w):
left, top, right, bot = bbox
width = right - left
height = bot - top
width_increase = max(increase_area, ((1 + 2 * increase_area) * height - width) / (2 * width))
height_increase = max(increase_area, ((1 + 2 * increase_area) * width - height) / (2 * height))
left_t = int(left - width_increase * width)
top_t = int(top - height_increase * height)
right_t = int(right + width_increase * width)
bot_t = int(bot + height_increase * height)
left_oob = -min(0, left_t)
right_oob = right - min(right_t, w)
top_oob = -min(0, top_t)
bot_oob = bot - min(bot_t, h)
if max(left_oob, right_oob, top_oob, bot_oob) > 0:
max_w = max(left_oob, right_oob)
max_h = max(top_oob, bot_oob)
if max_w > max_h:
return left_t + max_w, top_t + max_w, right_t - max_w, bot_t - max_w
else:
return left_t + max_h, top_t + max_h, right_t - max_h, bot_t - max_h
else:
return (left_t, top_t, right_t, bot_t)
def crop_src_image(src_img, detector=None):
if detector is None:
detector = dlib.get_frontal_face_detector()
save_img='/content/image_pre.png'
img = cv2.imread(src_img)
faces = detector(img, 0)
h, width, _ = img.shape
if len(faces) > 0:
bbox = [faces[0].left(), faces[0].top(),faces[0].right(), faces[0].bottom()]
l = bbox[3]-bbox[1]
bbox[1]= bbox[1]-l*0.1
bbox[3]= bbox[3]-l*0.1
bbox[1] = max(0,bbox[1])
bbox[3] = min(h,bbox[3])
bbox = compute_aspect_preserved_bbox(tuple(bbox), 0.5, img.shape[0], img.shape[1])
img = img[bbox[1] :bbox[3] , bbox[0]:bbox[2]]
img = cv2.resize(img, (256, 256))
cv2.imwrite(save_img,img)
else:
img = cv2.resize(img,(256,256))
cv2.imwrite(save_img, img)
def pad_image(image):
w, h = image.size
if w == h:
return image
elif w > h:
new_image = Image.new(image.mode, (w, w), (0, 0, 0))
new_image.paste(image, (0, (w - h) // 2))
return new_image
else:
new_image = Image.new(image.mode, (h, h), (0, 0, 0))
new_image.paste(image, ((h - w) // 2, 0))
return new_image
def calculate(image_in, audio_in):
waveform, sample_rate = torchaudio.load(audio_in)
torchaudio.save("/content/audio.wav", waveform, sample_rate, encoding="PCM_S", bits_per_sample=16)
image = Image.open(image_in)
image = pad_image(image)
image.save("image.png")
pocketsphinx_run = subprocess.run(['pocketsphinx', '-phone_align', 'yes', 'single', '/content/audio.wav'], check=True, capture_output=True)
jq_run = subprocess.run(['jq', '[.w[]|{word: (.t | ascii_upcase | sub("<S>"; "sil") | sub("<SIL>"; "sil") | sub("\\\(2\\\)"; "") | sub("\\\(3\\\)"; "") | sub("\\\(4\\\)"; "") | sub("\\\[SPEECH\\\]"; "SIL") | sub("\\\[NOISE\\\]"; "SIL")), phones: [.w[]|{ph: .t | sub("\\\+SPN\\\+"; "SIL") | sub("\\\+NSN\\\+"; "SIL"), bg: (.b*100)|floor, ed: (.b*100+.d*100)|floor}]}]'], input=pocketsphinx_run.stdout, capture_output=True)
with open("test.json", "w") as f:
f.write(jq_run.stdout.decode('utf-8').strip())
os.system(f"cd /content/one-shot-talking-face && python3 -B test_script.py --img_path /content/results/restored_imgs/image_pre.png --audio_path /content/audio.wav --phoneme_path /content/test.json --save_dir /content/train")
return "/content/train/image_audio.mp4"
def one_shot_talking(image_in,audio_in):
#Pre-processing of image
crop_src_image(image_in)
#Improve quality of input image
os.system(f"python /content/GFPGAN/inference_gfpgan.py --upscale 2 -i /content/image_pre.png -o /content/results --bg_upsampler realesrgan")
image_in_one_shot='/content/results/restored_imgs/image_pre.png'
#One Shot Talking Face algorithm
calculate(image_in_one_shot,audio_in)
#Video Quality Improvement
#1. Extract the frames from the video file using PyVideoFramesExtractor
os.system(f"python /content/PyVideoFramesExtractor/extract.py --video=/content/train/image_pre_audio.mp4")
#2. Improve image quality using GFPGAN on each frames
os.system(f"python /content/GFPGAN/inference_gfpgan.py --upscale 2 -i /content/extracted_frames/image_pre_audio_frames -o /content/video_results --bg_upsampler realesrgan")
#3. Merge all the frames to a one video using imageio
merge_frames()
audio_video()
return "Sucessufull"
def one_shot(image,input_text,gender):
if gender == 'Female' or gender == 'female':
tts = gTTS(input_text)
with tempfile.NamedTemporaryFile(suffix='.mp3', delete=False) as f:
tts.write_to_fp(f)
f.seek(0)
sound = AudioSegment.from_file(f.name, format="mp3")
sound.export("/content/audio.wav", format="wav")
one_shot_talking(image,'audio.wav')
elif gender == 'Male' or gender == 'male':
print(gender)
models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
"Voicemod/fastspeech2-en-male1",
arg_overrides={"vocoder": "hifigan", "fp16": False}
)
model = models[0].cuda()
TTSHubInterface.update_cfg_with_data_cfg(cfg, task.data_cfg)
generator = task.build_generator([model], cfg)
# next(model.parameters()).device
sample = TTSHubInterface.get_model_input(task, input_text)
sample["net_input"]["src_tokens"] = sample["net_input"]["src_tokens"].cuda()
sample["net_input"]["src_lengths"] = sample["net_input"]["src_lengths"].cuda()
sample["speaker"] = sample["speaker"].cuda()
wav, rate = TTSHubInterface.get_prediction(task, model, generator, sample)
# soundfile.write("/content/audio_before.wav", wav, rate)
soundfile.write("/content/audio_before.wav", wav.cpu().clone().numpy(), rate)
cmd='ffmpeg -i /content/audio_before.wav -filter:a "atempo=0.7" -vn /content/audio.wav'
os.system(cmd)
one_shot_talking(image,'audio.wav')
input_value = "Hello How are you?"
image = gr.Image(show_label=True, type="filepath",label="Input Image")
input_text=gr.Textbox(lines=3, value=input_value, label="Input Text")
gender = gr.Radio(["Female","Male"],value="Female",label="Gender")
output = gr.Video(show_label=True,label="Output")
demo = gr.Interface(
one_shot,
[image,input_text,gender],
[output],
title="One Shot Talking Face from Text",
)
demo.launch(enable_queue = False)
|