import gradio as gr import random # from huggingface_hub import Repository from datasets import load_dataset import os # hf_token = os.environ['hf_token'] # 确保环境变量中有你的令牌 # submission_url = "Vchitect/VBench_sampled_video" # 数据集的 URL # local_dir = "VBench_sampled_video" # 本地文件夹路径 dataset = load_dataset("Vchitect/VBench_sampled_video") # print(os.listdir("~/.cache/huggingface/datasets/Vchitect___VBench_sampled_video/")) # root = "~/.cache/huggingface/datasets/Vchitect___VBench_sampled_video/" root = os.environ['HF_DATASETS_CACHE'] print(root) def print_directory_contents(path, indent=0): # 打印当前目录的内容 try: for item in os.listdir(path): item_path = os.path.join(path, item) print(' ' * indent + item) # 使用缩进打印文件或文件夹 if os.path.isdir(item_path): # 如果是目录,则递归调用 print_directory_contents(item_path, indent + 1) except PermissionError: print(' ' * indent + "[权限错误,无法访问该目录]") # 调用函数,传入你想要打印的目录路径 print_directory_contents(root) # 替换为实际路径 # local_dir = # 克隆数据集 submission_repo = Repository(local_dir=local_dir, clone_from=submission_url, use_auth_token=hf_token, repo_type="dataset") submission_repo.git_pull() # 更新本地仓库 model_names = os.listdir(local_dir) with open("videos_by_dimension.json") as f: dimension = json.load(f)['videos_by_dimension'] # with open("all_videos.json") as f: # all_videos = json.load(f) types = ['appearance_style', 'color', 'temporal_style', 'spatial_relationship', 'temporal_flickering', 'scene', 'multiple_objects', 'object_class', 'human_action', 'overall_consistency', 'subject_consistency'] def get_random_video(): # 随机选择一个索引 random_index = random.randint(0, len(types) - 1) type = types[random_index] # 随机选择一个Prompt random_index = random.randint(0, len(dimension[type]) - 1) prompt = dimension[type][random_index] # 随机一个模型 random_index = random.randint(0, len(model_names) - 1) model_name = model_names[random_index] video_path = os.path.join(model_name, type, prompt) if os.path.exists(video_path): print(video_path) return video_path else: video_path = os.path.join(model_name, prompt) if os.path.exists(video_path): print(video_path) return video_path # video_path = dataset['train'][random_index]['video_path'] print('error:', video_path) return video_path # Gradio 接口 def display_video(): video_path = get_random_video() return video_path interface = gr.Interface(fn=display_video, outputs=gr.Video(label="随机视频展示"), inputs=[], title="随机视频展示", description="从 Vchitect/VBench_sampled_video 数据集中随机展示一个视频。") if __name__ == "__main__": interface.launch()