Spaces:
Paused
Paused
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
# hyperparameters | |
batch_size = 64 # how many independent sequences will we process in parallel? | |
block_size = 256 # what is the maximum context length for predictions? | |
max_iters = 5000 | |
eval_interval = 500 | |
learning_rate = 3e-4 | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
eval_iters = 200 | |
n_embd = 384 | |
n_head = 6 | |
n_layer = 6 | |
dropout = 0.2 | |
# ------------ | |
torch.manual_seed(1337) | |
# wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt | |
with open('input.txt', 'r', encoding='utf-8') as f: | |
text = f.read() | |
# here are all the unique characters that occur in this text | |
chars = sorted(list(set(text))) | |
vocab_size = len(chars) | |
# create a mapping from characters to integers | |
stoi = { ch:i for i,ch in enumerate(chars) } | |
itos = { i:ch for i,ch in enumerate(chars) } | |
encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers | |
decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string | |
# Train and test splits | |
data = torch.tensor(encode(text), dtype=torch.long) | |
n = int(0.9*len(data)) # first 90% will be train, rest val | |
train_data = data[:n] | |
val_data = data[n:] | |
# data loading | |
def get_batch(split): | |
# generate a small batch of data of inputs x and targets y | |
data = train_data if split == 'train' else val_data | |
ix = torch.randint(len(data) - block_size, (batch_size,)) | |
x = torch.stack([data[i:i+block_size] for i in ix]) | |
y = torch.stack([data[i+1:i+block_size+1] for i in ix]) | |
x, y = x.to(device), y.to(device) | |
return x, y | |
def estimate_loss(): | |
out = {} | |
model.eval() | |
for split in ['train', 'val']: | |
losses = torch.zeros(eval_iters) | |
for k in range(eval_iters): | |
X, Y = get_batch(split) | |
logits, loss = model(X, Y) | |
losses[k] = loss.item() | |
out[split] = losses.mean() | |
model.train() | |
return out | |
class Head(nn.Module): | |
""" one head of self-attention """ | |
def __init__(self, head_size): | |
super().__init__() | |
self.key = nn.Linear(n_embd, head_size, bias=False) | |
self.query = nn.Linear(n_embd, head_size, bias=False) | |
self.value = nn.Linear(n_embd, head_size, bias=False) | |
self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size))) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x): | |
# input of size (batch, time-step, channels) | |
# output of size (batch, time-step, head size) | |
B,T,C = x.shape | |
k = self.key(x) # (B,T,hs) | |
q = self.query(x) # (B,T,hs) | |
# compute attention scores ("affinities") | |
wei = q @ k.transpose(-2,-1) * k.shape[-1]**-0.5 # (B, T, hs) @ (B, hs, T) -> (B, T, T) | |
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T) | |
wei = F.softmax(wei, dim=-1) # (B, T, T) | |
wei = self.dropout(wei) | |
# perform the weighted aggregation of the values | |
v = self.value(x) # (B,T,hs) | |
out = wei @ v # (B, T, T) @ (B, T, hs) -> (B, T, hs) | |
return out | |
class MultiHeadAttention(nn.Module): | |
""" multiple heads of self-attention in parallel """ | |
def __init__(self, num_heads, head_size): | |
super().__init__() | |
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)]) | |
self.proj = nn.Linear(head_size * num_heads, n_embd) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x): | |
out = torch.cat([h(x) for h in self.heads], dim=-1) | |
out = self.dropout(self.proj(out)) | |
return out | |
class FeedFoward(nn.Module): | |
""" a simple linear layer followed by a non-linearity """ | |
def __init__(self, n_embd): | |
super().__init__() | |
self.net = nn.Sequential( | |
nn.Linear(n_embd, 4 * n_embd), | |
nn.ReLU(), | |
nn.Linear(4 * n_embd, n_embd), | |
nn.Dropout(dropout), | |
) | |
def forward(self, x): | |
return self.net(x) | |
class Block(nn.Module): | |
""" Transformer block: communication followed by computation """ | |
def __init__(self, n_embd, n_head): | |
# n_embd: embedding dimension, n_head: the number of heads we'd like | |
super().__init__() | |
head_size = n_embd // n_head | |
self.sa = MultiHeadAttention(n_head, head_size) | |
self.ffwd = FeedFoward(n_embd) | |
self.ln1 = nn.LayerNorm(n_embd) | |
self.ln2 = nn.LayerNorm(n_embd) | |
def forward(self, x): | |
x = x + self.sa(self.ln1(x)) | |
x = x + self.ffwd(self.ln2(x)) | |
return x | |
class GPTLanguageModel(nn.Module): | |
def __init__(self): | |
super().__init__() | |
# each token directly reads off the logits for the next token from a lookup table | |
self.token_embedding_table = nn.Embedding(vocab_size, n_embd) | |
self.position_embedding_table = nn.Embedding(block_size, n_embd) | |
self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)]) | |
self.ln_f = nn.LayerNorm(n_embd) # final layer norm | |
self.lm_head = nn.Linear(n_embd, vocab_size) | |
# better init, not covered in the original GPT video, but important, will cover in followup video | |
self.apply(self._init_weights) | |
def _init_weights(self, module): | |
if isinstance(module, nn.Linear): | |
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
if module.bias is not None: | |
torch.nn.init.zeros_(module.bias) | |
elif isinstance(module, nn.Embedding): | |
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
def forward(self, idx, targets=None): | |
B, T = idx.shape | |
# idx and targets are both (B,T) tensor of integers | |
tok_emb = self.token_embedding_table(idx) # (B,T,C) | |
pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T,C) | |
x = tok_emb + pos_emb # (B,T,C) | |
x = self.blocks(x) # (B,T,C) | |
x = self.ln_f(x) # (B,T,C) | |
logits = self.lm_head(x) # (B,T,vocab_size) | |
if targets is None: | |
loss = None | |
else: | |
B, T, C = logits.shape | |
logits = logits.view(B*T, C) | |
targets = targets.view(B*T) | |
loss = F.cross_entropy(logits, targets) | |
return logits, loss | |
def generate(self, idx, max_new_tokens): | |
# idx is (B, T) array of indices in the current context | |
for _ in range(max_new_tokens): | |
# crop idx to the last block_size tokens | |
idx_cond = idx[:, -block_size:] | |
# get the predictions | |
logits, loss = self(idx_cond) | |
# focus only on the last time step | |
logits = logits[:, -1, :] # becomes (B, C) | |
# apply softmax to get probabilities | |
probs = F.softmax(logits, dim=-1) # (B, C) | |
# sample from the distribution | |
idx_next = torch.multinomial(probs, num_samples=1) # (B, 1) | |
# append sampled index to the running sequence | |
idx = torch.cat((idx, idx_next), dim=1) # (B, T+1) | |
return idx | |
model = GPTLanguageModel() | |
m = model.to(device) | |
context = torch.zeros((1, 1), dtype=torch.long, device=device) |