Commit
·
f72ff7c
1
Parent(s):
8891c1e
Testing a simpler agent
Browse files- agents/agent.py +149 -68
agents/agent.py
CHANGED
@@ -1,80 +1,162 @@
|
|
1 |
-
"""LangGraph Agent
|
2 |
-
from tools.SearchToolkit import wiki_search, web_search, arxiv_search, vector_store
|
3 |
-
from tools.MathsToolkit import (
|
4 |
-
multiply, add, subtract, divide, modulus, power, square_root
|
5 |
-
)
|
6 |
-
from tools.ImagesToolkit import (
|
7 |
-
analyze_image,
|
8 |
-
transform_image,
|
9 |
-
draw_on_image,
|
10 |
-
generate_simple_image,
|
11 |
-
combine_images
|
12 |
-
)
|
13 |
-
from tools.DocumentsToolkit import (
|
14 |
-
save_and_read_file,
|
15 |
-
download_file_from_url,
|
16 |
-
extract_text_from_image,
|
17 |
-
analyze_csv_file,
|
18 |
-
analyze_excel_file,
|
19 |
-
analyze_word_file,
|
20 |
-
analyze_pdf_file
|
21 |
-
)
|
22 |
-
from tools.CodeToolkit import execute_code_multilang
|
23 |
-
from langchain_groq import ChatGroq
|
24 |
-
from langchain_core.messages import SystemMessage, HumanMessage
|
25 |
-
from langgraph.prebuilt import tools_condition, ToolNode
|
26 |
-
from langgraph.graph import START, StateGraph, MessagesState
|
27 |
import os
|
28 |
from dotenv import load_dotenv
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
load_dotenv()
|
31 |
|
32 |
-
prompt_path = os.path.join(os.path.dirname(__file__), "../prompts")
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
system_prompt = f.read()
|
|
|
|
|
38 |
sys_msg = SystemMessage(content=system_prompt)
|
39 |
|
40 |
-
#
|
41 |
-
|
42 |
-
#
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
|
|
|
48 |
multiply,
|
49 |
add,
|
50 |
subtract,
|
51 |
divide,
|
52 |
modulus,
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
# DocumentsToolkit
|
57 |
-
save_and_read_file,
|
58 |
-
download_file_from_url,
|
59 |
-
extract_text_from_image,
|
60 |
-
analyze_csv_file,
|
61 |
-
analyze_excel_file,
|
62 |
-
analyze_word_file,
|
63 |
-
analyze_pdf_file,
|
64 |
-
|
65 |
-
# CodeToolkit
|
66 |
-
execute_code_multilang,
|
67 |
-
|
68 |
-
# ImagesToolkit
|
69 |
-
analyze_image,
|
70 |
-
transform_image,
|
71 |
-
draw_on_image,
|
72 |
-
generate_simple_image,
|
73 |
-
combine_images,
|
74 |
]
|
75 |
|
76 |
-
# Build LangGraph workflow
|
77 |
-
|
78 |
|
79 |
def build_graph():
|
80 |
llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
|
@@ -84,14 +166,13 @@ def build_graph():
|
|
84 |
return {"messages": [llm_with_tools.invoke(state["messages"])]}
|
85 |
|
86 |
def retriever(state: MessagesState):
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
return {"messages": [sys_msg] + state["messages"]}
|
95 |
|
96 |
builder = StateGraph(MessagesState)
|
97 |
builder.add_node("retriever", retriever)
|
|
|
1 |
+
"""LangGraph Agent"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import os
|
3 |
from dotenv import load_dotenv
|
4 |
+
from langgraph.graph import START, StateGraph, MessagesState
|
5 |
+
from langgraph.prebuilt import tools_condition
|
6 |
+
from langgraph.prebuilt import ToolNode
|
7 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
8 |
+
from langchain_groq import ChatGroq
|
9 |
+
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
|
10 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
11 |
+
from langchain_community.document_loaders import WikipediaLoader
|
12 |
+
from langchain_community.document_loaders import ArxivLoader
|
13 |
+
from langchain_community.vectorstores import SupabaseVectorStore
|
14 |
+
from langchain_core.messages import SystemMessage, HumanMessage
|
15 |
+
from langchain_core.tools import tool
|
16 |
+
from langchain.tools.retriever import create_retriever_tool
|
17 |
+
from supabase.client import Client, create_client
|
18 |
+
|
19 |
load_dotenv()
|
20 |
|
|
|
21 |
|
22 |
+
@tool
|
23 |
+
def multiply(a: int, b: int) -> int:
|
24 |
+
"""Multiply two numbers.
|
25 |
+
Args:
|
26 |
+
a: first int
|
27 |
+
b: second int
|
28 |
+
"""
|
29 |
+
return a * b
|
30 |
+
|
31 |
+
|
32 |
+
@tool
|
33 |
+
def add(a: int, b: int) -> int:
|
34 |
+
"""Add two numbers.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
a: first int
|
38 |
+
b: second int
|
39 |
+
"""
|
40 |
+
return a + b
|
41 |
+
|
42 |
+
|
43 |
+
@tool
|
44 |
+
def subtract(a: int, b: int) -> int:
|
45 |
+
"""Subtract two numbers.
|
46 |
+
|
47 |
+
Args:
|
48 |
+
a: first int
|
49 |
+
b: second int
|
50 |
+
"""
|
51 |
+
return a - b
|
52 |
+
|
53 |
+
|
54 |
+
@tool
|
55 |
+
def divide(a: int, b: int) -> int:
|
56 |
+
"""Divide two numbers.
|
57 |
+
|
58 |
+
Args:
|
59 |
+
a: first int
|
60 |
+
b: second int
|
61 |
+
"""
|
62 |
+
if b == 0:
|
63 |
+
raise ValueError("Cannot divide by zero.")
|
64 |
+
return a / b
|
65 |
+
|
66 |
+
|
67 |
+
@tool
|
68 |
+
def modulus(a: int, b: int) -> int:
|
69 |
+
"""Get the modulus of two numbers.
|
70 |
+
|
71 |
+
Args:
|
72 |
+
a: first int
|
73 |
+
b: second int
|
74 |
+
"""
|
75 |
+
return a % b
|
76 |
|
77 |
+
|
78 |
+
@tool
|
79 |
+
def wiki_search(query: str) -> str:
|
80 |
+
"""Search Wikipedia for a query and return maximum 2 results.
|
81 |
+
|
82 |
+
Args:
|
83 |
+
query: The search query."""
|
84 |
+
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
85 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
86 |
+
[
|
87 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
88 |
+
for doc in search_docs
|
89 |
+
])
|
90 |
+
return {"wiki_results": formatted_search_docs}
|
91 |
+
|
92 |
+
|
93 |
+
@tool
|
94 |
+
def web_search(query: str) -> str:
|
95 |
+
"""Search Tavily for a query and return maximum 3 results.
|
96 |
+
|
97 |
+
Args:
|
98 |
+
query: The search query."""
|
99 |
+
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
|
100 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
101 |
+
[
|
102 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
103 |
+
for doc in search_docs
|
104 |
+
])
|
105 |
+
return {"web_results": formatted_search_docs}
|
106 |
+
|
107 |
+
|
108 |
+
@tool
|
109 |
+
def arvix_search(query: str) -> str:
|
110 |
+
"""Search Arxiv for a query and return maximum 3 result.
|
111 |
+
|
112 |
+
Args:
|
113 |
+
query: The search query."""
|
114 |
+
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
115 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
116 |
+
[
|
117 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
|
118 |
+
for doc in search_docs
|
119 |
+
])
|
120 |
+
return {"arvix_results": formatted_search_docs}
|
121 |
+
|
122 |
+
|
123 |
+
# load the system prompt from the file
|
124 |
+
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
125 |
system_prompt = f.read()
|
126 |
+
|
127 |
+
# System message
|
128 |
sys_msg = SystemMessage(content=system_prompt)
|
129 |
|
130 |
+
# build a retriever
|
131 |
+
embeddings = HuggingFaceEmbeddings(
|
132 |
+
model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
|
133 |
+
supabase: Client = create_client(
|
134 |
+
os.environ.get("SUPABASE_URL"),
|
135 |
+
os.environ.get("SUPABASE_SERVICE_KEY"))
|
136 |
+
vector_store = SupabaseVectorStore(
|
137 |
+
client=supabase,
|
138 |
+
embedding=embeddings,
|
139 |
+
table_name="documents",
|
140 |
+
query_name="match_documents_langchain",
|
141 |
+
)
|
142 |
+
create_retriever_tool = create_retriever_tool(
|
143 |
+
retriever=vector_store.as_retriever(),
|
144 |
+
name="Question Search",
|
145 |
+
description="A tool to retrieve similar questions from a vector store.",
|
146 |
+
)
|
147 |
|
148 |
+
|
149 |
+
tools = [
|
150 |
multiply,
|
151 |
add,
|
152 |
subtract,
|
153 |
divide,
|
154 |
modulus,
|
155 |
+
wiki_search,
|
156 |
+
web_search,
|
157 |
+
arvix_search,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
]
|
159 |
|
|
|
|
|
160 |
|
161 |
def build_graph():
|
162 |
llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
|
|
|
166 |
return {"messages": [llm_with_tools.invoke(state["messages"])]}
|
167 |
|
168 |
def retriever(state: MessagesState):
|
169 |
+
"""Retriever node"""
|
170 |
+
similar_question = vector_store.similarity_search(
|
171 |
+
state["messages"][0].content)
|
172 |
+
example_msg = HumanMessage(
|
173 |
+
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
|
174 |
+
)
|
175 |
+
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
|
|
|
176 |
|
177 |
builder = StateGraph(MessagesState)
|
178 |
builder.add_node("retriever", retriever)
|