# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license """ Dataloaders """ import os import random import cv2 import numpy as np import torch from torch.utils.data import DataLoader, distributed from ..augmentations import augment_hsv, copy_paste, letterbox from ..dataloaders import InfiniteDataLoader, LoadImagesAndLabels, SmartDistributedSampler, seed_worker from ..general import LOGGER, xyn2xy, xywhn2xyxy, xyxy2xywhn from ..torch_utils import torch_distributed_zero_first from .augmentations import mixup, random_perspective RANK = int(os.getenv('RANK', -1)) def create_dataloader(path, imgsz, batch_size, stride, single_cls=False, hyp=None, augment=False, cache=False, pad=0.0, rect=False, rank=-1, workers=8, image_weights=False, quad=False, prefix='', shuffle=False, mask_downsample_ratio=1, overlap_mask=False, seed=0): if rect and shuffle: LOGGER.warning('WARNING ⚠️ --rect is incompatible with DataLoader shuffle, setting shuffle=False') shuffle = False with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP dataset = LoadImagesAndLabelsAndMasks( path, imgsz, batch_size, augment=augment, # augmentation hyp=hyp, # hyperparameters rect=rect, # rectangular batches cache_images=cache, single_cls=single_cls, stride=int(stride), pad=pad, image_weights=image_weights, prefix=prefix, downsample_ratio=mask_downsample_ratio, overlap=overlap_mask, rank=rank) batch_size = min(batch_size, len(dataset)) nd = torch.cuda.device_count() # number of CUDA devices nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers]) # number of workers sampler = None if rank == -1 else SmartDistributedSampler(dataset, shuffle=shuffle) loader = DataLoader if image_weights else InfiniteDataLoader # only DataLoader allows for attribute updates generator = torch.Generator() generator.manual_seed(6148914691236517205 + seed + RANK) return loader( dataset, batch_size=batch_size, shuffle=shuffle and sampler is None, num_workers=nw, sampler=sampler, pin_memory=True, collate_fn=LoadImagesAndLabelsAndMasks.collate_fn4 if quad else LoadImagesAndLabelsAndMasks.collate_fn, worker_init_fn=seed_worker, generator=generator, ), dataset class LoadImagesAndLabelsAndMasks(LoadImagesAndLabels): # for training/testing def __init__( self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False, cache_images=False, single_cls=False, stride=32, pad=0, min_items=0, prefix='', downsample_ratio=1, overlap=False, rank=-1, seed=0, ): super().__init__(path, img_size, batch_size, augment, hyp, rect, image_weights, cache_images, single_cls, stride, pad, min_items, prefix, rank, seed) self.downsample_ratio = downsample_ratio self.overlap = overlap def __getitem__(self, index): index = self.indices[index] # linear, shuffled, or image_weights hyp = self.hyp mosaic = self.mosaic and random.random() < hyp['mosaic'] masks = [] if mosaic: # Load mosaic img, labels, segments = self.load_mosaic(index) shapes = None # MixUp augmentation if random.random() < hyp['mixup']: img, labels, segments = mixup(img, labels, segments, *self.load_mosaic(random.randint(0, self.n - 1))) else: # Load image img, (h0, w0), (h, w) = self.load_image(index) # Letterbox shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment) shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling labels = self.labels[index].copy() # [array, array, ....], array.shape=(num_points, 2), xyxyxyxy segments = self.segments[index].copy() if len(segments): for i_s in range(len(segments)): segments[i_s] = xyn2xy( segments[i_s], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1], ) if labels.size: # normalized xywh to pixel xyxy format labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1]) if self.augment: img, labels, segments = random_perspective(img, labels, segments=segments, degrees=hyp['degrees'], translate=hyp['translate'], scale=hyp['scale'], shear=hyp['shear'], perspective=hyp['perspective']) nl = len(labels) # number of labels if nl: labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1e-3) if self.overlap: masks, sorted_idx = polygons2masks_overlap(img.shape[:2], segments, downsample_ratio=self.downsample_ratio) masks = masks[None] # (640, 640) -> (1, 640, 640) labels = labels[sorted_idx] else: masks = polygons2masks(img.shape[:2], segments, color=1, downsample_ratio=self.downsample_ratio) masks = (torch.from_numpy(masks) if len(masks) else torch.zeros(1 if self.overlap else nl, img.shape[0] // self.downsample_ratio, img.shape[1] // self.downsample_ratio)) # TODO: albumentations support if self.augment: # Albumentations # there are some augmentation that won't change boxes and masks, # so just be it for now. img, labels = self.albumentations(img, labels) nl = len(labels) # update after albumentations # HSV color-space augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v']) # Flip up-down if random.random() < hyp['flipud']: img = np.flipud(img) if nl: labels[:, 2] = 1 - labels[:, 2] masks = torch.flip(masks, dims=[1]) # Flip left-right if random.random() < hyp['fliplr']: img = np.fliplr(img) if nl: labels[:, 1] = 1 - labels[:, 1] masks = torch.flip(masks, dims=[2]) # Cutouts # labels = cutout(img, labels, p=0.5) labels_out = torch.zeros((nl, 6)) if nl: labels_out[:, 1:] = torch.from_numpy(labels) # Convert img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB img = np.ascontiguousarray(img) return (torch.from_numpy(img), labels_out, self.im_files[index], shapes, masks) def load_mosaic(self, index): # YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic labels4, segments4 = [], [] s = self.img_size yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border) # mosaic center x, y # 3 additional image indices indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices for i, index in enumerate(indices): # Load image img, _, (h, w) = self.load_image(index) # place img in img4 if i == 0: # top left img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image) x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image) elif i == 1: # top right x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h elif i == 2: # bottom left x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h) x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h) elif i == 3: # bottom right x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h) x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h) img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax] padw = x1a - x1b padh = y1a - y1b labels, segments = self.labels[index].copy(), self.segments[index].copy() if labels.size: labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format segments = [xyn2xy(x, w, h, padw, padh) for x in segments] labels4.append(labels) segments4.extend(segments) # Concat/clip labels labels4 = np.concatenate(labels4, 0) for x in (labels4[:, 1:], *segments4): np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective() # img4, labels4 = replicate(img4, labels4) # replicate # Augment img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp['copy_paste']) img4, labels4, segments4 = random_perspective(img4, labels4, segments4, degrees=self.hyp['degrees'], translate=self.hyp['translate'], scale=self.hyp['scale'], shear=self.hyp['shear'], perspective=self.hyp['perspective'], border=self.mosaic_border) # border to remove return img4, labels4, segments4 @staticmethod def collate_fn(batch): img, label, path, shapes, masks = zip(*batch) # transposed batched_masks = torch.cat(masks, 0) for i, l in enumerate(label): l[:, 0] = i # add target image index for build_targets() return torch.stack(img, 0), torch.cat(label, 0), path, shapes, batched_masks def polygon2mask(img_size, polygons, color=1, downsample_ratio=1): """ Args: img_size (tuple): The image size. polygons (np.ndarray): [N, M], N is the number of polygons, M is the number of points(Be divided by 2). """ mask = np.zeros(img_size, dtype=np.uint8) polygons = np.asarray(polygons) polygons = polygons.astype(np.int32) shape = polygons.shape polygons = polygons.reshape(shape[0], -1, 2) cv2.fillPoly(mask, polygons, color=color) nh, nw = (img_size[0] // downsample_ratio, img_size[1] // downsample_ratio) # NOTE: fillPoly firstly then resize is trying the keep the same way # of loss calculation when mask-ratio=1. mask = cv2.resize(mask, (nw, nh)) return mask def polygons2masks(img_size, polygons, color, downsample_ratio=1): """ Args: img_size (tuple): The image size. polygons (list[np.ndarray]): each polygon is [N, M], N is the number of polygons, M is the number of points(Be divided by 2). """ masks = [] for si in range(len(polygons)): mask = polygon2mask(img_size, [polygons[si].reshape(-1)], color, downsample_ratio) masks.append(mask) return np.array(masks) def polygons2masks_overlap(img_size, segments, downsample_ratio=1): """Return a (640, 640) overlap mask.""" masks = np.zeros((img_size[0] // downsample_ratio, img_size[1] // downsample_ratio), dtype=np.int32 if len(segments) > 255 else np.uint8) areas = [] ms = [] for si in range(len(segments)): mask = polygon2mask( img_size, [segments[si].reshape(-1)], downsample_ratio=downsample_ratio, color=1, ) ms.append(mask) areas.append(mask.sum()) areas = np.asarray(areas) index = np.argsort(-areas) ms = np.array(ms)[index] for i in range(len(segments)): mask = ms[i] * (i + 1) masks = masks + mask masks = np.clip(masks, a_min=0, a_max=i + 1) return masks, index