import tensorflow as tf import numpy as np from PIL import Image import cv2 def get_odometer_xy(model_path, image_path): #model_path = 'odo_detector.tflite' interpreter = tf.lite.Interpreter(model_path=model_path) interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() # Obtain the height and width of the corresponding image from the input tensor image_height = input_details[0]['shape'][1] # 640 image_width = input_details[0]['shape'][2] # 640 # Image Preparation # image_name = 'car.jpg' image = Image.open(image_path) image_resized = image.resize((image_width, image_height)) # Resize the image to the corresponding size of the input tensor and store it in a new variable image_np = np.array(image_resized) # image_np = np.true_divide(image_np, 255, dtype=np.float32) image_np = image_np[np.newaxis, :] # inference interpreter.set_tensor(input_details[0]['index'], image_np) interpreter.invoke() # Obtaining output results output = interpreter.get_tensor(output_details[0]['index']) output = output[0] output = output.T boxes_xywh = output[:, :4] #Get coordinates of bounding box, first 4 columns of output tensor scores = output[:, 4]#np.max(output[..., 5:], axis=1) #Get score value, 5th column of output tensor classes = np.zeros(len(scores))#np.argmax(output[..., 5:], axis=1) # Get the class value, get the 6th and subsequent columns of the output tensor, and store the largest value in the output tensor. # Threshold Setting # threshold = 0.7 final_score = 0 x_center, y_center, width, height = 0, 0, 0, 0 class_name = 'odometer' # Bounding boxes, scores, and classes are drawn on the image # draw = ImageDraw.Draw(image_resized) for box, score, cls in zip(boxes_xywh, scores, classes): if score >= final_score: x_center, y_center, width, height = box final_score = score class_name = cls else: pass x1 = int((x_center - width / 2) * image_width) y1 = int((y_center - height / 2) * image_height) x2 = int((x_center + width / 2) * image_width) y2 = int((y_center + height / 2) * image_height) # draw.rectangle([x1, y1, x2, y2], outline="red", width=2) # text = f"Class: {class_name}, Score: {final_score:.2f}" # draw.text((x1, y1), text, fill="red") # Saving Images # image_resized.save('test_img.jpg') return x1, y1, x2, y2, final_score def get_digit(model_path, image_path, threshold=0.5): interpreter = tf.lite.Interpreter(model_path=model_path) interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() # Obtain the height and width of the corresponding image from the input tensor image_height = input_details[0]['shape'][1] # 640 image_width = input_details[0]['shape'][2] # 640 # Image Preparation # image_name = 'car.jpg' # image = Image.open(image_path2) # image_resized = image.resize((image_width, image_height)) # Resize the image to the corresponding size of the input tensor and store it in a new variable image = cv2.imread(image_path) # image_resized = np.resize(image, (image_width, image_height, 3)) image_np = np.array(image) # image_np = np.true_divide(image_np, 255, dtype=np.float32) image_np = image_np[np.newaxis, :] # inference interpreter.set_tensor(input_details[0]['index'], image_np) interpreter.invoke() # Obtaining output results output = interpreter.get_tensor(output_details[0]['index']) output = output[0] output = output.T boxes_xywh = output[:, :4] #Get coordinates of bounding box, first 4 columns of output tensor scores = np.max(output[:, 4:], axis=1) #Get score value, 5th column of output tensor classes = np.argmax(output[:, 4:], axis=1) # Get the class value, get the 6th and subsequent columns of the output tensor, and store the largest value in the output tensor. pred_list = [] prob_threshold = threshold for box, score, cls in zip(boxes_xywh, scores, classes): if score < prob_threshold: continue x_center, y_center, width, height = box x1 = int((x_center - width / 2) * image_width) y1 = int((y_center - height / 2) * image_height) x2 = int((x_center + width / 2) * image_width) y2 = int((y_center + height / 2) * image_height) pred_list.append((x1, x2, cls, score)) pred_list = sorted(pred_list, key=lambda x: x[0]) num_list = [] temp_pred_list =[] x_prev = 0 x_diff = min([elem[1] - elem[0] for elem in pred_list]) - 10 for idx, pred in enumerate(pred_list): if idx == 0: temp_pred_list.append(pred) x_prev = pred[0] elif idx == len(pred_list) - 1: temp_final_num = sorted(temp_pred_list, key=lambda x: x[-1], reverse=True)[0] num_list.append(temp_final_num) elif pred[0] - x_prev < x_diff: temp_pred_list.append(pred) x_prev = pred[0] else: temp_final_num = sorted(temp_pred_list, key=lambda x: x[-1], reverse=True)[0] num_list.append(temp_final_num) temp_pred_list = [] x_prev = pred[0] temp_pred_list.append(pred) sorted_number_list = sorted(num_list, key=lambda x: x[0]) # sorted_number_list = sorted(sorted_number_list, reverse=True, key= lambda x: x[-1]) # output_digit = float(''.join([str(int(i[2])) if i[2]!=10 else '.' for i in sorted_number_list])) output_digit = float(''.join([str(int(i[2])) if i[2]!=10 else '.' for i in sorted_number_list])) # output_digit = ''.join([str(int(i[2])) if i[2]!=10 else '.' for i in sorted_number_list[:10]]) return output_digit