import torch import torchaudio import torchaudio.functional as F from torchaudio.utils import download_asset from pesq import pesq from pystoi import stoi import mir_eval from pydub import AudioSegment import matplotlib.pyplot as plt import streamlit as st from helper import plot_spectrogram,plot_mask,si_snr,generate_mixture,evaluate,get_irms target_snr=3 #parameters for STFT N_FFT = 1024 N_HOP = 256 stft = torchaudio.transforms.Spectrogram( n_fft=N_FFT, hop_length=N_HOP, power=None, ) istft = torchaudio.transforms.InverseSpectrogram(n_fft=N_FFT, hop_length=N_HOP) #defining a psd transform psd_transform = torchaudio.transforms.PSD() mvdr_transform = torchaudio.transforms.SoudenMVDR() #defining the reference microphone REFERENCE_CHANNEL = 0 #creating a random noise for better calculations SAMPLE_NOISE = download_asset("tutorial-assets/mvdr/noise.wav") waveform_noise, sr2 = torchaudio.load(SAMPLE_NOISE) waveform_noise = waveform_noise.to(torch.double) stft_noise = stft(waveform_noise) def ui(): st.title("Speech Enhancer") st.markdown("Made by Vageesh") #making an audio developer uploader: audio_file = st.file_uploader("Upload an audio file in wav format", type=[ "wav"]) if audio_file is not None: waveform_clean,sr=torchaudio.load(audio_file) waveform_clean = waveform_clean.to(torch.double) stft_clean = stft(waveform_clean) st.text("Your uploaded audio") st.audio(audio_file) #creating a mixture of our audio file and the noise file waveform_mix = generate_mixture(waveform_clean, waveform_noise, target_snr) #making the files into torch double format waveform_mix = waveform_mix.to(torch.double) #computing STFT stft_mix = stft(waveform_mix) #plotting the spectogram spec_img=plot_spectrogram(stft_mix) st.image(spec_img) #showing mixed audio in streamlit torchaudio.save("./waveform_mix.wav", waveform_mix, sr) st.audio("./waveform_mix.wav") #getting the irms irm_speech, irm_noise = get_irms(stft_clean, stft_noise) #getting the psd speech psd_speech = psd_transform(stft_mix, irm_speech) psd_noise = psd_transform(stft_mix, irm_noise) stft_souden = mvdr_transform(stft_mix, psd_speech, psd_noise, reference_channel=REFERENCE_CHANNEL) waveform_souden = istft(stft_souden, length=waveform_mix.shape[-1]) #plotting the cleaned audio and hearing it spec_clean_img=plot_spectrogram(stft_souden) waveform_souden = waveform_souden.reshape(1, -1) st.image(spec_clean_img) torchaudio.save("./waveform_souden.wav", waveform_souden, sr) st.audio("./waveform_souden.wav") if __name__=="__main__": ui()