import streamlit as st from audiorecorder import audiorecorder import torch from transformers import pipeline import torch import torchaudio from langchain.embeddings.openai import OpenAIEmbeddings from langchain import HuggingFaceHub, LLMChain, PromptTemplate from langchain.memory import ConversationBufferWindowMemory from langchain.chat_models import ChatOpenAI from langchain.chains import ConversationalRetrievalChain from langchain.document_loaders.csv_loader import CSVLoader from langchain.vectorstores import FAISS import tempfile from streamlit_chat import message import streamlit as st from elevenlabs import set_api_key from elevenlabs import clone, generate, play from pydub import AudioSegment import os import re import sys import pandas as pd import librosa from helper import parse_transcription,hindi_to_english,translate_english_to_hindi,hindi_tts def extract_text_from_html(html): cleanr = re.compile('<.*?>') cleantext = re.sub(cleanr, '', html) def conversational_chat(chain,query): result = chain({"question": query, "chat_history": st.session_state['history']}) st.session_state['history'].append((query, result["answer"])) return result["answer"] def save_uploaded_file_as_mp3(uploaded_file, output_file_path): audio = AudioSegment.from_file(uploaded_file) audio.export(output_file_path, format="mp3") user_api_key = st.sidebar.text_input( label="#### Your OpenAI API key 👇", placeholder="Paste your openAI API key, sk-", type="password") def ui(): if user_api_key is not None and user_api_key.strip() != "": os.environ["OPENAI_API_KEY"] = user_api_key template = """ Your custom prompt {history} Me: Behave like a Telecomm customer service call agent and don't include any website address, company name, or any other parameter in your output {human_input} Jack: """ prompt = PromptTemplate( input_variables=["history", "human_input"], template=template ) llm_chain = LLMChain( llm=ChatOpenAI(temperature=0.0, model_name='gpt-3.5-turbo'), prompt=prompt, verbose=True, memory=ConversationBufferWindowMemory(k=2) ) if 'history' not in st.session_state: st.session_state['history'] = [] if 'generated' not in st.session_state: st.session_state['generated'] = [] if 'past' not in st.session_state: st.session_state['past'] = [] eleven_labs_api_key = st.sidebar.text_input( label="Your Eleven Labs API key 👇", placeholder="Paste your Eleven Labs API key", type="password") set_api_key(user_api_key) audio_file = st.file_uploader("Upload an audio file", type=["wav", "mp4", "mp3"]) if audio_file is not None: output_file_path = "./output_audio.mp3" save_uploaded_file_as_mp3(audio_file, output_file_path) hindi_input_audio, sample_rate = librosa.load(output_file_path, sr=None, mono=True) # Applying audio recognition hindi_transcription = parse_transcription('./output_audio.mp3') st.success(f"Audio file saved as {output_file_path}") # Convert Hindi to English english_input = hindi_to_english(hindi_transcription) # Feeding the input to the LLM english_output = conversational_chat(llm_chain, english_input) # Convert English to Hindi hin_output = translate_english_to_hindi(english_output) # Getting the Hindi TTS hindi_output_audio = hindi_tts(hin_output) # Show original uploaded audio st.audio(audio_file, format='audio/mp3') # Show processed output audio st.audio(hindi_output_audio, format='audio/mp3') # st.markdown("---") # # Add a new audio uploader for users to upload another audio file # with st.form(key='my_form', clear_on_submit=True): # audio_file_new = st.file_uploader("Upload another audio file", type=["wav", "mp4", "mp3"]) # submit_button = st.form_submit_button(label='Process and Play') # if audio_file_new is not None and submit_button: # output_file_path_new = "./output_audio_new.mp3" # save_uploaded_file_as_mp3(audio_file_new, output_file_path_new) # hindi_input_audio_new, sample_rate_new = librosa.load(output_file_path_new, sr=None, mono=True) # # Applying audio recognition for the new file # hindi_transcription_new = parse_transcription(output_file_path_new) # st.success(f"Audio file saved as {output_file_path_new}") # # Convert Hindi to English for the new file # english_input_new = hindi_to_english(hindi_transcription_new) # # Feeding the input to the LLM for the new file # english_output_new = conversational_chat(llm_chain, english_input_new) # # Convert English to Hindi for the new file # hin_output_new = translate_english_to_hindi(english_output_new) # # Getting the Hindi TTS for the new file # hindi_output_audio_new = hindi_tts(hin_output_new) # # Show original uploaded audio for the new file # st.audio(audio_file_new, format='audio/mp3') # # Show processed output audio for the new file # st.audio(hindi_output_audio_new, format='audio/mp3') if __name__ == '__main__': ui()