Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +134 -0
- helper.py +77 -0
- requirements.txt +14 -0
app.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from audiorecorder import audiorecorder
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from transformers import pipeline
|
6 |
+
import torch
|
7 |
+
import torchaudio
|
8 |
+
|
9 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
10 |
+
from langchain import HuggingFaceHub, LLMChain, PromptTemplate
|
11 |
+
from langchain.memory import ConversationBufferWindowMemory
|
12 |
+
from langchain.chat_models import ChatOpenAI
|
13 |
+
from langchain.chains import ConversationalRetrievalChain
|
14 |
+
from langchain.document_loaders.csv_loader import CSVLoader
|
15 |
+
from langchain.vectorstores import FAISS
|
16 |
+
import tempfile
|
17 |
+
from streamlit_chat import message
|
18 |
+
import streamlit as st
|
19 |
+
from elevenlabs import set_api_key
|
20 |
+
from elevenlabs import clone, generate, play
|
21 |
+
from pydub import AudioSegment
|
22 |
+
|
23 |
+
import os
|
24 |
+
import re
|
25 |
+
import sys
|
26 |
+
import pandas as pd
|
27 |
+
|
28 |
+
from helper import parse_transcription,hindi_to_english,translate_english_to_hindi,hindi_tts
|
29 |
+
|
30 |
+
def extract_text_from_html(html):
|
31 |
+
cleanr = re.compile('<.*?>')
|
32 |
+
cleantext = re.sub(cleanr, '', html)
|
33 |
+
def conversational_chat(query):
|
34 |
+
result = llm_chain({"question": query,
|
35 |
+
"chat_history": st.session_state['history']})
|
36 |
+
st.session_state['history'].append((query, result["answer"]))
|
37 |
+
|
38 |
+
return result["answer"]
|
39 |
+
|
40 |
+
def save_uploaded_file_as_mp3(uploaded_file, output_file_path):
|
41 |
+
audio = AudioSegment.from_file(uploaded_file)
|
42 |
+
audio.export(output_file_path, format="mp3")
|
43 |
+
|
44 |
+
def ui():
|
45 |
+
user_api_key = st.sidebar.text_input(
|
46 |
+
label="#### Your OpenAI API key 👇",
|
47 |
+
placeholder="Paste your openAI API key, sk-",
|
48 |
+
type="password")
|
49 |
+
|
50 |
+
eleven_labs_api_key = st.sidebar.text_input(
|
51 |
+
label="#### Your OpenAI API key 👇",
|
52 |
+
placeholder="Paste your openAI API key, sk-",
|
53 |
+
type="password")
|
54 |
+
if user_api_key is not None and user_api_key.strip() != "":
|
55 |
+
os.environ["OPENAI_API_KEY"] =user_api_key
|
56 |
+
template = """
|
57 |
+
Behave like a Telecomm customer servce call agent and don't include any website address, compnay name or any other parameter in your output
|
58 |
+
{history}
|
59 |
+
Me:{human_input}
|
60 |
+
Jack:
|
61 |
+
"""
|
62 |
+
|
63 |
+
prompt = PromptTemplate(
|
64 |
+
input_variables=["history", "human_input"],
|
65 |
+
template=template
|
66 |
+
)
|
67 |
+
|
68 |
+
llm_chain = LLMChain(
|
69 |
+
llm = ChatOpenAI(temperature=0.0,model_name='gpt-3.5-turbo'),
|
70 |
+
prompt=prompt,
|
71 |
+
verbose=True,
|
72 |
+
memory=ConversationBufferWindowMemory(k=2)
|
73 |
+
)
|
74 |
+
|
75 |
+
if 'history' not in st.session_state:
|
76 |
+
st.session_state['history'] = []
|
77 |
+
|
78 |
+
if 'generated' not in st.session_state:
|
79 |
+
st.session_state['generated'] = ["Hello ! Ask me anything about " + " 🤗"]
|
80 |
+
|
81 |
+
if 'past' not in st.session_state:
|
82 |
+
st.session_state['past'] = ["Hey ! 👋"]
|
83 |
+
|
84 |
+
if user_api_key is not None and user_api_key.strip() != "":
|
85 |
+
eleven_labs_api_key = st.sidebar.text_input(
|
86 |
+
label="#### Your Eleven Labs API key 👇",
|
87 |
+
placeholder="Paste your Eleven Labs API key",
|
88 |
+
type="password")
|
89 |
+
|
90 |
+
set_api_key(user_api_key)
|
91 |
+
|
92 |
+
#container for the chat history
|
93 |
+
response_container = st.container()
|
94 |
+
#container for the user's text input
|
95 |
+
container = st.container()
|
96 |
+
|
97 |
+
with container:
|
98 |
+
audio_file = audiorecorder("Click to record", "Recording...")
|
99 |
+
audio_file=audio_file.tobytes()
|
100 |
+
submit_button = st.form_submit_button(label='Send')
|
101 |
+
if submit_button and audio_file:
|
102 |
+
output_file_path = "./output_audio.mp3"
|
103 |
+
save_uploaded_file_as_mp3(audio_file,output_file_path )
|
104 |
+
hindi_input_audio,sample_rate=torchaudio.load(output_file_path)
|
105 |
+
#applying the audio recognition
|
106 |
+
hindi_transcription=parse_transcription('./output_audio.mp3')
|
107 |
+
st.success(f"Audio file saved as {output_file_path}")
|
108 |
+
#convert hindi to english
|
109 |
+
english_input=hindi_to_english(hindi_transcription)
|
110 |
+
#feeding the input to the LLM
|
111 |
+
english_output = conversational_chat(english_input)
|
112 |
+
#converting english to hindi
|
113 |
+
hin_output=translate_english_to_hindi(english_output)
|
114 |
+
#getting the hindi_tts
|
115 |
+
hindi_output_audio=hindi_tts(hin_output)
|
116 |
+
|
117 |
+
st.session_state['past'].append(hindi_input_audio)
|
118 |
+
st.session_state['generated'].append(hindi_output_audio)
|
119 |
+
|
120 |
+
if st.session_state['generated']:
|
121 |
+
with response_container:
|
122 |
+
for i in range(len(st.session_state['generated'])):
|
123 |
+
st.audio(st.session_state["past"][i])
|
124 |
+
st.audio(st.session_state["generated"][i])
|
125 |
+
|
126 |
+
if __name__ == '__main__':
|
127 |
+
ui()
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
|
helper.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchaudio
|
3 |
+
import torch
|
4 |
+
from transformers import pipeline
|
5 |
+
import soundfile as sf
|
6 |
+
import torch
|
7 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
8 |
+
import argparse
|
9 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
10 |
+
import librosa
|
11 |
+
from huggingface_hub.hf_api import HfFolder
|
12 |
+
from transformers import MarianMTModel, MarianTokenizer
|
13 |
+
from elevenlabs import set_api_key
|
14 |
+
from elevenlabs import clone, generate, play
|
15 |
+
HfFolder.save_token('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')
|
16 |
+
access_token = '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'
|
17 |
+
|
18 |
+
|
19 |
+
tokenizer_en_hn = AutoTokenizer.from_pretrained("vasudevgupta/mbart-bhasha-hin-eng")
|
20 |
+
model_translate_en_hm = AutoModelForSeq2SeqLM.from_pretrained("vasudevgupta/mbart-bhasha-hin-eng")
|
21 |
+
|
22 |
+
processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-hindi-him-4200")
|
23 |
+
model_speech = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-hindi-him-4200")
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
def parse_transcription(wav_file):
|
28 |
+
# load audio
|
29 |
+
audio_input, sample_rate = librosa.load(wav_file, sr=16000)
|
30 |
+
|
31 |
+
# pad input values and return pt tensor
|
32 |
+
input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values
|
33 |
+
|
34 |
+
# INFERENCE
|
35 |
+
# retrieve logits & take argmax
|
36 |
+
logits = model_speech(input_values).logits
|
37 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
38 |
+
|
39 |
+
# transcribe
|
40 |
+
transcription = processor.decode(predicted_ids[0], skip_special_tokens=True)
|
41 |
+
return transcription
|
42 |
+
|
43 |
+
def hindi_to_english(text):
|
44 |
+
inputs = tokenizer_en_hn.encode(
|
45 |
+
text, return_tensors="pt",padding=True,max_length=512,truncation=True)
|
46 |
+
|
47 |
+
outputs = model_translate_en_hm.generate(
|
48 |
+
inputs, max_length=128, num_beams=4, early_stopping=True
|
49 |
+
)
|
50 |
+
translated = tokenizer_en_hn.decode(outputs[0]).replace('<pad>',"").replace('<s>', "").strip().lower()
|
51 |
+
return translated
|
52 |
+
|
53 |
+
def translate_english_to_hindi(input_text):
|
54 |
+
# Load the pre-trained English to Hindi translation model and tokenizer
|
55 |
+
model_name = "Helsinki-NLP/opus-mt-en-hi"
|
56 |
+
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
57 |
+
model = MarianMTModel.from_pretrained(model_name)
|
58 |
+
|
59 |
+
# Tokenize the input text and generate translation
|
60 |
+
inputs = tokenizer(input_text, return_tensors="pt", padding=True)
|
61 |
+
translated_ids = model.generate(inputs.input_ids)
|
62 |
+
|
63 |
+
# Decode the translated output
|
64 |
+
translated_text = tokenizer.decode(translated_ids[0], skip_special_tokens=True)
|
65 |
+
|
66 |
+
return translated_text
|
67 |
+
|
68 |
+
def hindi_tts(text):
|
69 |
+
audio = generate(
|
70 |
+
text="Hi! My name is Bella, nice to meet you!",
|
71 |
+
voice="Customer Service",
|
72 |
+
model="eleven_monolingual_v1"
|
73 |
+
)
|
74 |
+
|
75 |
+
return audio
|
76 |
+
|
77 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
streamlit-audiorecorder
|
3 |
+
langchain
|
4 |
+
streamlit
|
5 |
+
openai
|
6 |
+
tiktoken
|
7 |
+
faiss-cpu
|
8 |
+
streamlit_chat
|
9 |
+
huggingface_hub
|
10 |
+
librosa
|
11 |
+
sentencepiece
|
12 |
+
elevenlabs
|
13 |
+
pydub
|
14 |
+
torchaudio
|