|
from application.llm.base import BaseLLM |
|
|
|
class HuggingFaceLLM(BaseLLM): |
|
|
|
def __init__(self, api_key, llm_name='Arc53/DocsGPT-7B',q=False): |
|
global hf |
|
|
|
from langchain.llms import HuggingFacePipeline |
|
if q: |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, BitsAndBytesConfig |
|
tokenizer = AutoTokenizer.from_pretrained(llm_name) |
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.bfloat16 |
|
) |
|
model = AutoModelForCausalLM.from_pretrained(llm_name,quantization_config=bnb_config) |
|
else: |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
tokenizer = AutoTokenizer.from_pretrained(llm_name) |
|
model = AutoModelForCausalLM.from_pretrained(llm_name) |
|
|
|
pipe = pipeline( |
|
"text-generation", model=model, |
|
tokenizer=tokenizer, max_new_tokens=2000, |
|
device_map="auto", eos_token_id=tokenizer.eos_token_id |
|
) |
|
hf = HuggingFacePipeline(pipeline=pipe) |
|
|
|
def gen(self, model, engine, messages, stream=False, **kwargs): |
|
context = messages[0]['content'] |
|
user_question = messages[-1]['content'] |
|
prompt = f"### Instruction \n {user_question} \n ### Context \n {context} \n ### Answer \n" |
|
|
|
result = hf(prompt) |
|
|
|
return result.content |
|
|
|
def gen_stream(self, model, engine, messages, stream=True, **kwargs): |
|
|
|
raise NotImplementedError("HuggingFaceLLM Streaming is not implemented yet.") |
|
|
|
|