File size: 14,035 Bytes
8a41f4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import asyncio
import os
from flask import Blueprint, request, Response
import json
import datetime
import logging
import traceback

from pymongo import MongoClient
from bson.objectid import ObjectId
from transformers import GPT2TokenizerFast



from application.core.settings import settings
from application.vectorstore.vector_creator import VectorCreator
from application.llm.llm_creator import LLMCreator
from application.error import bad_request



logger = logging.getLogger(__name__)

mongo = MongoClient(settings.MONGO_URI)
db = mongo["docsgpt"]
conversations_collection = db["conversations"]
vectors_collection = db["vectors"]
prompts_collection = db["prompts"]
answer = Blueprint('answer', __name__)

if settings.LLM_NAME == "gpt4":
    gpt_model = 'gpt-4'
elif settings.LLM_NAME == "anthropic":
    gpt_model = 'claude-2'
else:
    gpt_model = 'gpt-3.5-turbo'

# load the prompts
current_dir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
with open(os.path.join(current_dir, "prompts", "chat_combine_default.txt"), "r") as f:
    chat_combine_template = f.read()

with open(os.path.join(current_dir, "prompts", "chat_reduce_prompt.txt"), "r") as f:
    chat_reduce_template = f.read()

with open(os.path.join(current_dir, "prompts", "chat_combine_creative.txt"), "r") as f:
    chat_combine_creative = f.read()

with open(os.path.join(current_dir, "prompts", "chat_combine_strict.txt"), "r") as f:
    chat_combine_strict = f.read()    

api_key_set = settings.API_KEY is not None
embeddings_key_set = settings.EMBEDDINGS_KEY is not None


async def async_generate(chain, question, chat_history):
    result = await chain.arun({"question": question, "chat_history": chat_history})
    return result


def count_tokens(string):
    tokenizer = GPT2TokenizerFast.from_pretrained('gpt2')
    return len(tokenizer(string)['input_ids'])


def run_async_chain(chain, question, chat_history):
    loop = asyncio.new_event_loop()
    asyncio.set_event_loop(loop)
    result = {}
    try:
        answer = loop.run_until_complete(async_generate(chain, question, chat_history))
    finally:
        loop.close()
    result["answer"] = answer
    return result


def get_vectorstore(data):
    if "active_docs" in data:
        if data["active_docs"].split("/")[0] == "default":
                vectorstore = ""
        elif data["active_docs"].split("/")[0] == "local":
            vectorstore = "indexes/" + data["active_docs"]
        else:
            vectorstore = "vectors/" + data["active_docs"]
        if data["active_docs"] == "default":
            vectorstore = ""
    else:
        vectorstore = ""
    vectorstore = os.path.join("application", vectorstore)
    return vectorstore


def is_azure_configured():
    return settings.OPENAI_API_BASE and settings.OPENAI_API_VERSION and settings.AZURE_DEPLOYMENT_NAME


def complete_stream(question, docsearch, chat_history, api_key, prompt_id, conversation_id):
    llm = LLMCreator.create_llm(settings.LLM_NAME, api_key=api_key)

    if prompt_id == 'default':
        prompt = chat_combine_template
    elif prompt_id == 'creative':
        prompt = chat_combine_creative
    elif prompt_id == 'strict':
        prompt = chat_combine_strict
    else:
        prompt = prompts_collection.find_one({"_id": ObjectId(prompt_id)})["content"]

    docs = docsearch.search(question, k=2)
    if settings.LLM_NAME == "llama.cpp":
        docs = [docs[0]]
    # join all page_content together with a newline
    docs_together = "\n".join([doc.page_content for doc in docs])
    p_chat_combine = prompt.replace("{summaries}", docs_together)
    messages_combine = [{"role": "system", "content": p_chat_combine}]
    source_log_docs = []
    for doc in docs:
        if doc.metadata:
            source_log_docs.append({"title": doc.metadata['title'].split('/')[-1], "text": doc.page_content})
        else:
            source_log_docs.append({"title": doc.page_content, "text": doc.page_content})

    if len(chat_history) > 1:
        tokens_current_history = 0
        # count tokens in history
        chat_history.reverse()
        for i in chat_history:
            if "prompt" in i and "response" in i:
                tokens_batch = count_tokens(i["prompt"]) + count_tokens(i["response"])
                if tokens_current_history + tokens_batch < settings.TOKENS_MAX_HISTORY:
                    tokens_current_history += tokens_batch
                    messages_combine.append({"role": "user", "content": i["prompt"]})
                    messages_combine.append({"role": "system", "content": i["response"]})
    messages_combine.append({"role": "user", "content": question})

    response_full = ""
    completion = llm.gen_stream(model=gpt_model, engine=settings.AZURE_DEPLOYMENT_NAME,
                                messages=messages_combine)
    for line in completion:
        data = json.dumps({"answer": str(line)})
        response_full += str(line)
        yield f"data: {data}\n\n"

    # save conversation to database
    if conversation_id is not None:
        conversations_collection.update_one(
            {"_id": ObjectId(conversation_id)},
            {"$push": {"queries": {"prompt": question, "response": response_full, "sources": source_log_docs}}},
        )

    else:
        # create new conversation
        # generate summary
        messages_summary = [{"role": "assistant", "content": "Summarise following conversation in no more than 3 "
                                                             "words, respond ONLY with the summary, use the same "
                                                             "language as the system \n\nUser: " + question + "\n\n" +
                                                             "AI: " +
                                                             response_full},
                            {"role": "user", "content": "Summarise following conversation in no more than 3 words, "
                                                        "respond ONLY with the summary, use the same language as the "
                                                        "system"}]

        completion = llm.gen(model=gpt_model, engine=settings.AZURE_DEPLOYMENT_NAME,
                             messages=messages_summary, max_tokens=30)
        conversation_id = conversations_collection.insert_one(
            {"user": "local",
             "date": datetime.datetime.utcnow(),
             "name": completion,
             "queries": [{"prompt": question, "response": response_full, "sources": source_log_docs}]}
        ).inserted_id

    # send data.type = "end" to indicate that the stream has ended as json
    data = json.dumps({"type": "id", "id": str(conversation_id)})
    yield f"data: {data}\n\n"
    data = json.dumps({"type": "end"})
    yield f"data: {data}\n\n"


@answer.route("/stream", methods=["POST"])
def stream():
    data = request.get_json()
    # get parameter from url question
    question = data["question"]
    history = data["history"]
    # history to json object from string
    history = json.loads(history)
    conversation_id = data["conversation_id"]
    if 'prompt_id' in data:
        prompt_id = data["prompt_id"]
    else:
        prompt_id = 'default'

    # check if active_docs is set

    if not api_key_set:
        api_key = data["api_key"]
    else:
        api_key = settings.API_KEY
    if not embeddings_key_set:
        embeddings_key = data["embeddings_key"]
    else:
        embeddings_key = settings.EMBEDDINGS_KEY
    if "active_docs" in data:
        vectorstore = get_vectorstore({"active_docs": data["active_docs"]})
    else:
        vectorstore = ""
    docsearch = VectorCreator.create_vectorstore(settings.VECTOR_STORE, vectorstore, embeddings_key)

    return Response(
        complete_stream(question, docsearch,
                        chat_history=history, api_key=api_key,
                        prompt_id=prompt_id,
                        conversation_id=conversation_id), mimetype="text/event-stream"
    )


@answer.route("/api/answer", methods=["POST"])
def api_answer():
    data = request.get_json()
    question = data["question"]
    history = data["history"]
    if "conversation_id" not in data:
        conversation_id = None
    else:
        conversation_id = data["conversation_id"]
    print("-" * 5)
    if not api_key_set:
        api_key = data["api_key"]
    else:
        api_key = settings.API_KEY
    if not embeddings_key_set:
        embeddings_key = data["embeddings_key"]
    else:
        embeddings_key = settings.EMBEDDINGS_KEY
    if 'prompt_id' in data:
        prompt_id = data["prompt_id"]
    else:
        prompt_id = 'default'

    if prompt_id == 'default':
        prompt = chat_combine_template
    elif prompt_id == 'creative':
        prompt = chat_combine_creative
    elif prompt_id == 'strict':
        prompt = chat_combine_strict
    else:
        prompt = prompts_collection.find_one({"_id": ObjectId(prompt_id)})["content"]

    # use try and except  to check for exception
    try:
        # check if the vectorstore is set
        vectorstore = get_vectorstore(data)
        # loading the index and the store and the prompt template
        # Note if you have used other embeddings than OpenAI, you need to change the embeddings
        docsearch = VectorCreator.create_vectorstore(settings.VECTOR_STORE, vectorstore, embeddings_key)


        llm = LLMCreator.create_llm(settings.LLM_NAME, api_key=api_key)



        docs = docsearch.search(question, k=2)
        # join all page_content together with a newline
        docs_together = "\n".join([doc.page_content for doc in docs])
        p_chat_combine = prompt.replace("{summaries}", docs_together)
        messages_combine = [{"role": "system", "content": p_chat_combine}]
        source_log_docs = []
        for doc in docs:
            if doc.metadata:
                source_log_docs.append({"title": doc.metadata['title'].split('/')[-1], "text": doc.page_content})
            else:
                source_log_docs.append({"title": doc.page_content, "text": doc.page_content})
        # join all page_content together with a newline


        if len(history) > 1:
            tokens_current_history = 0
            # count tokens in history
            history.reverse()
            for i in history:
                if "prompt" in i and "response" in i:
                    tokens_batch = count_tokens(i["prompt"]) + count_tokens(i["response"])
                    if tokens_current_history + tokens_batch < settings.TOKENS_MAX_HISTORY:
                        tokens_current_history += tokens_batch
                        messages_combine.append({"role": "user", "content": i["prompt"]})
                        messages_combine.append({"role": "system", "content": i["response"]})
        messages_combine.append({"role": "user", "content": question})


        completion = llm.gen(model=gpt_model, engine=settings.AZURE_DEPLOYMENT_NAME,
                                    messages=messages_combine)


        result = {"answer": completion, "sources": source_log_docs}
        logger.debug(result)

        # generate conversationId
        if conversation_id is not None:
            conversations_collection.update_one(
                {"_id": ObjectId(conversation_id)},
                {"$push": {"queries": {"prompt": question,
                                       "response": result["answer"], "sources": result['sources']}}},
            )

        else:
            # create new conversation
            # generate summary
            messages_summary = [
                {"role": "assistant", "content": "Summarise following conversation in no more than 3 words, "
                    "respond ONLY with the summary, use the same language as the system \n\n"
                    "User: " + question + "\n\n" + "AI: " + result["answer"]},
                {"role": "user", "content": "Summarise following conversation in no more than 3 words, "
                    "respond ONLY with the summary, use the same language as the system"}
            ]

            completion = llm.gen(
                model=gpt_model,
                engine=settings.AZURE_DEPLOYMENT_NAME,
                messages=messages_summary,
                max_tokens=30
            )
            conversation_id = conversations_collection.insert_one(
                {"user": "local",
                "date": datetime.datetime.utcnow(),
                "name": completion,
                "queries": [{"prompt": question, "response": result["answer"], "sources": source_log_docs}]}
            ).inserted_id

        result["conversation_id"] = str(conversation_id)

        # mock result
        # result = {
        #     "answer": "The answer is 42",
        #     "sources": ["https://en.wikipedia.org/wiki/42_(number)", "https://en.wikipedia.org/wiki/42_(number)"]
        # }
        return result
    except Exception as e:
        # print whole traceback
        traceback.print_exc()
        print(str(e))
        return bad_request(500, str(e))


@answer.route("/api/search", methods=["POST"])
def api_search():
    data = request.get_json()
    # get parameter from url question
    question = data["question"]

    if not embeddings_key_set:
        embeddings_key = data["embeddings_key"]
    else:
        embeddings_key = settings.EMBEDDINGS_KEY
    if "active_docs" in data:
        vectorstore = get_vectorstore({"active_docs": data["active_docs"]})
    else:
        vectorstore = ""
    docsearch = VectorCreator.create_vectorstore(settings.VECTOR_STORE, vectorstore, embeddings_key)

    docs = docsearch.search(question, k=2)

    source_log_docs = []
    for doc in docs:
        if doc.metadata:
            source_log_docs.append({"title": doc.metadata['title'].split('/')[-1], "text": doc.page_content})
        else:
            source_log_docs.append({"title": doc.page_content, "text": doc.page_content})
        #yield f"data:{data}\n\n"
    return source_log_docs