# Authenticate with Hugging Face from huggingface_hub import login import os # Log in to Hugging Face using the provided token hf_token = os.getenv("HF_TOKEN") login(hf_token) # Required imports import gradio as gr import spaces from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer from qwen_vl_utils import process_vision_info import torch from PIL import Image import os import uuid import io from threading import Thread from reportlab.lib.pagesizes import A4 from reportlab.lib.styles import getSampleStyleSheet from reportlab.lib import colors from reportlab.platypus import SimpleDocTemplate, Image as RLImage, Paragraph, Spacer from reportlab.pdfbase import pdfmetrics from reportlab.pdfbase.ttfonts import TTFont import docx from docx.enum.text import WD_ALIGN_PARAGRAPH from reportlab.lib.units import inch # Define model options MODEL_OPTIONS = { "ChemQwen-1": "prithivMLmods/ChemQwen-vL", "ChemQwen-2": "prithivMLmods/ChemQwen2-vL", } # Preload models and processors into CUDA models = {} processors = {} for name, model_id in MODEL_OPTIONS.items(): print(f"Loading {name}...") models[name] = Qwen2VLForConditionalGeneration.from_pretrained( model_id, trust_remote_code=True, torch_dtype=torch.float16 ).to("cuda").eval() processors[name] = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) image_extensions = Image.registered_extensions() def identify_and_save_blob(blob_path): """Identifies if the blob is an image and saves it.""" try: with open(blob_path, 'rb') as file: blob_content = file.read() try: Image.open(io.BytesIO(blob_content)).verify() extension = ".png" media_type = "image" except (IOError, SyntaxError): raise ValueError("Unsupported media type. Please upload a valid image.") filename = f"temp_{uuid.uuid4()}_media{extension}" with open(filename, "wb") as f: f.write(blob_content) return filename, media_type except FileNotFoundError: raise ValueError(f"The file {blob_path} was not found.") except Exception as e: raise ValueError(f"An error occurred while processing the file: {e}") @spaces.GPU def qwen_inference(model_name, media_input, text_input=None): """Handles inference for the selected model.""" model = models[model_name] processor = processors[model_name] if isinstance(media_input, str): media_path = media_input if media_path.endswith(tuple([i for i in image_extensions.keys()])): media_type = "image" else: try: media_path, media_type = identify_and_save_blob(media_input) except Exception as e: raise ValueError("Unsupported media type. Please upload a valid image.") messages = [ { "role": "user", "content": [ { "type": media_type, media_type: media_path }, {"type": "text", "text": text_input}, ], } ] text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, _ = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, padding=True, return_tensors="pt", ).to("cuda") streamer = TextIteratorStreamer( processor.tokenizer, skip_prompt=True, skip_special_tokens=True ) generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text # Remove <|im_end|> or similar tokens from the output buffer = buffer.replace("<|im_end|>", "") yield buffer def format_plain_text(output_text): """Formats the output text as plain text without LaTeX delimiters.""" plain_text = output_text.replace("\\(", "").replace("\\)", "").replace("\\[", "").replace("\\]", "") return plain_text def generate_document(media_path, output_text, file_format, font_size, line_spacing, alignment, image_size): """Generates a document with the input image and plain text output.""" plain_text = format_plain_text(output_text) if file_format == "pdf": return generate_pdf(media_path, plain_text, font_size, line_spacing, alignment, image_size) elif file_format == "docx": return generate_docx(media_path, plain_text, font_size, line_spacing, alignment, image_size) def generate_pdf(media_path, plain_text, font_size, line_spacing, alignment, image_size): """Generates a PDF document.""" filename = f"output_{uuid.uuid4()}.pdf" doc = SimpleDocTemplate( filename, pagesize=A4, rightMargin=inch, leftMargin=inch, topMargin=inch, bottomMargin=inch ) styles = getSampleStyleSheet() styles["Normal"].fontSize = int(font_size) styles["Normal"].leading = int(font_size) * line_spacing styles["Normal"].alignment = { "Left": 0, "Center": 1, "Right": 2, "Justified": 4 }[alignment] story = [] image_sizes = { "Small": (200, 200), "Medium": (400, 400), "Large": (600, 600) } img = RLImage(media_path, width=image_sizes[image_size][0], height=image_sizes[image_size][1]) story.append(img) story.append(Spacer(1, 12)) text = Paragraph(plain_text, styles["Normal"]) story.append(text) doc.build(story) return filename def generate_docx(media_path, plain_text, font_size, line_spacing, alignment, image_size): """Generates a DOCX document.""" filename = f"output_{uuid.uuid4()}.docx" doc = docx.Document() # Convert image to PNG format before adding to document try: img = Image.open(media_path) temp_image_path = f"temp_{uuid.uuid4()}.png" img.save(temp_image_path, "PNG") image_sizes = { "Small": docx.shared.Inches(2), "Medium": docx.shared.Inches(4), "Large": docx.shared.Inches(6) } doc.add_picture(temp_image_path, width=image_sizes[image_size]) # Clean up temporary image file os.remove(temp_image_path) except Exception as e: print(f"Error processing image: {e}") # Continue without image if there's an error doc.add_paragraph() paragraph = doc.add_paragraph() paragraph.paragraph_format.line_spacing = line_spacing paragraph.paragraph_format.alignment = { "Left": WD_ALIGN_PARAGRAPH.LEFT, "Center": WD_ALIGN_PARAGRAPH.CENTER, "Right": WD_ALIGN_PARAGRAPH.RIGHT, "Justified": WD_ALIGN_PARAGRAPH.JUSTIFY }[alignment] run = paragraph.add_run(plain_text) run.font.size = docx.shared.Pt(int(font_size)) doc.save(filename) return filename # CSS styling css = """ #output { height: 500px; overflow: auto; border: 1px solid #ccc; } .container { background: linear-gradient(145deg, #f0f0f0, #ffffff); border-radius: 20px; box-shadow: 20px 20px 60px #bebebe, -20px -20px 60px #ffffff; padding: 2rem; margin: 1rem; } .title { text-align: center; font-size: 2.5rem; color: #2d3436; text-shadow: 2px 2px 4px rgba(0,0,0,0.2); margin-bottom: 2rem; } .submit-btn { background: linear-gradient(145deg, #ff4757, #ff6b81) !important; color: white !important; border: none !important; border-radius: 10px !important; padding: 0.8rem 1.5rem !important; font-weight: bold !important; transform: translateY(0); transition: all 0.3s ease !important; box-shadow: 0 4px 15px rgba(255, 71, 87, 0.3) !important; } .submit-btn:hover { transform: translateY(-2px) !important; box-shadow: 0 6px 20px rgba(255, 71, 87, 0.4) !important; } .download-btn { background: linear-gradient(145deg, #00b894, #00cec9) !important; color: white !important; border: none !important; border-radius: 10px !important; padding: 0.8rem 1.5rem !important; font-weight: bold !important; transform: translateY(0); transition: all 0.3s ease !important; box-shadow: 0 4px 15px rgba(0, 184, 148, 0.3) !important; } .download-btn:hover { transform: translateY(-2px) !important; box-shadow: 0 6px 20px rgba(0, 184, 148, 0.4) !important; } .input-box { border-radius: 10px !important; border: 2px solid #dfe6e9 !important; transition: all 0.3s ease !important; } .input-box:focus { border-color: #00b894 !important; box-shadow: 0 0 10px rgba(0, 184, 148, 0.2) !important; } """ # Gradio app setup with gr.Blocks(css=css) as demo: gr.Markdown("# ๐Ÿงช ChemQwen Chemical Identifier AI ๐Ÿค–", elem_classes="title") with gr.Tab(label="๐Ÿ–ผ๏ธ Image Analysis"): with gr.Row(elem_classes="container"): with gr.Column(): model_choice = gr.Dropdown( label="๐Ÿ” Select Model", choices=list(MODEL_OPTIONS.keys()), value="ChemQwen-1", elem_classes="input-box" ) input_media = gr.File( label="๐Ÿ“ค Upload Image", type="filepath", elem_classes="input-box" ) text_input = gr.Textbox( label="โ“ Your Question", placeholder="Ask anything about the image...", elem_classes="input-box" ) submit_btn = gr.Button(value="๐Ÿš€ Analyze", elem_classes="submit-btn") with gr.Column(): output_text = gr.Textbox( label="๐Ÿ“ AI Response", lines=10, elem_classes="input-box" ) plain_text_output = gr.Textbox( label="๐Ÿ“‹ Standardized Text", lines=10, elem_classes="input-box" ) with gr.Row(elem_classes="container"): with gr.Column(): gr.Markdown("### ๐Ÿ“„ Document Settings") line_spacing = gr.Dropdown( choices=[0.5, 1.0, 1.15, 1.5, 2.0, 2.5, 3.0], value=1.5, label="โ†•๏ธ Line Spacing", elem_classes="input-box" ) font_size = gr.Dropdown( choices=["8", "10", "12", "14", "16", "18", "20", "22", "24"], value="18", label="๐Ÿ“ Font Size", elem_classes="input-box" ) alignment = gr.Dropdown( choices=["Left", "Center", "Right", "Justified"], value="Justified", label="โšก Text Alignment", elem_classes="input-box" ) image_size = gr.Dropdown( choices=["Small", "Medium", "Large"], value="Medium", label="๐Ÿ–ผ๏ธ Image Size", elem_classes="input-box" ) file_format = gr.Radio( ["pdf", "docx"], label="๐Ÿ“ File Format", value="pdf", elem_classes="input-box" ) get_document_btn = gr.Button( value="๐Ÿ’พ Generate Document", elem_classes="download-btn" ) submit_btn.click( qwen_inference, [model_choice, input_media, text_input], output_text, ).then( format_plain_text, output_text, plain_text_output ) get_document_btn.click( generate_document, [input_media, output_text, file_format, font_size, line_spacing, alignment, image_size], gr.File(label="๐Ÿ“ฅ Download Document") ) gr.Markdown(""" ### ๐ŸŒŸ Features - ๐Ÿ”ฌ Advanced Chemical Structure Analysis - ๐Ÿ“Š Multiple Model Support - ๐Ÿ’ซ Real-time Processing - ๐Ÿ“‘ Custom Document Generation ### ๐Ÿ’ก Tips - ๐Ÿ“ธ Upload clear images for better results - โœ๏ธ Be specific with your questions - ๐Ÿ“ Use the document generator for professional reports """) demo.launch(debug=True)