import streamlit as st
import http.client
import json
import os
import PyPDF2
import io
from google import genai
import requests
from dotenv import load_dotenv
import time
# Load environment variables from .env file
load_dotenv()
# Configure page
st.set_page_config(page_title="AI Job Finder", page_icon="💼", layout="wide")
# Styling
st.markdown("""
""", unsafe_allow_html=True)
# Header
st.markdown('
AI-Powered Job Finder
', unsafe_allow_html=True)
st.markdown('', unsafe_allow_html=True)
# Initialize session state variables
if 'resume_text' not in st.session_state:
st.session_state.resume_text = ""
if 'resume_parsed' not in st.session_state:
st.session_state.resume_parsed = False
if 'parsed_data' not in st.session_state:
st.session_state.parsed_data = {}
if 'job_results' not in st.session_state:
st.session_state.job_results = []
if 'search_completed' not in st.session_state:
st.session_state.search_completed = False
# Define the JSON schema for resume parsing
RESUME_SCHEMA = {
"schema": {
"basic_info": {
"name": "string",
"email": "string",
"phone": "string",
"location": "string"
},
"professional_summary": "string",
"skills": ["string"],
"technical_skills": ["string"],
"soft_skills": ["string"],
"experience": [{
"job_title": "string",
"company": "string",
"duration": "string",
"description": "string"
}],
"education": [{
"degree": "string",
"institution": "string",
"year": "string"
}],
"certifications": ["string"],
"years_of_experience": "number"
}
}
# Function to extract text from PDF
def extract_text_from_pdf(pdf_file):
pdf_reader = PyPDF2.PdfReader(pdf_file)
text = ""
for page_num in range(len(pdf_reader.pages)):
text += pdf_reader.pages[page_num].extract_text()
return text
# Function to parse resume with Gemini
def parse_resume_with_gemini(resume_text):
try:
# Configure the Gemini API
client = genai.Client(api_key=os.getenv('GEMINI_API_KEY'))
# Construct the prompt with schema
prompt = f"""
Parse the following resume text and extract information according to this exact JSON schema:
{json.dumps(RESUME_SCHEMA, indent=2)}
Resume text:
{resume_text}
Make sure to follow the schema exactly. If any information is not available, use empty strings or empty arrays as appropriate.
Return ONLY the JSON object with no additional text.
"""
# Generate the response
response = client.models.generate_content(model="gemini-2.0-flash", contents=prompt)
# Parse the response to get JSON
try:
parsed_data = json.loads(response.text)
return parsed_data
except json.JSONDecodeError:
# Try to extract JSON from the text if not directly parseable
import re
json_match = re.search(r'```json\n(.*?)\n```', response.text, re.DOTALL)
if json_match:
return json.loads(json_match.group(1))
else:
st.error("Could not parse the response as JSON")
return RESUME_SCHEMA["schema"]
except Exception as e:
st.error(f"Error parsing resume: {str(e)}")
return RESUME_SCHEMA["schema"]
# Function to search for jobs
def search_jobs(query, location="", page=1):
try:
conn = http.client.HTTPSConnection("jsearch.p.rapidapi.com")
# Format the query string
search_query = query.replace(" ", "%20")
if location:
search_query += f"%20in%20{location.replace(' ', '%20')}"
headers = {
'X-RapidAPI-Key': os.getenv('RAPIDAPI_KEY'),
'X-RapidAPI-Host': "jsearch.p.rapidapi.com"
}
conn.request("GET", f"/search?query={search_query}&page={page}&num_pages=1", headers=headers)
res = conn.getresponse()
data = res.read()
return json.loads(data.decode("utf-8"))
except Exception as e:
st.error(f"Error searching for jobs: {str(e)}")
return {"data": []}
if 'filter_remote_only' not in st.session_state:
st.session_state.filter_remote_only = False
if 'filter_employment_types' not in st.session_state:
st.session_state.filter_employment_types = []
if 'filter_date_posted' not in st.session_state:
st.session_state.filter_date_posted = 0
if 'min_salary' not in st.session_state:
st.session_state.min_salary = 0
if 'max_salary' not in st.session_state:
st.session_state.max_salary = 1000000
if 'filter_company_types' not in st.session_state:
st.session_state.filter_company_types = []
# Function to apply filters to job results
def apply_filters(jobs):
filtered_jobs = []
for job in jobs:
# Check remote filter
if st.session_state.filter_remote_only and not job.get('job_is_remote', False):
continue
# Check employment type filter
if st.session_state.filter_employment_types and job.get('job_employment_type') not in st.session_state.filter_employment_types:
continue
# Check date posted filter (in days)
if st.session_state.filter_date_posted > 0:
current_time = int(time.time())
posted_time = job.get('job_posted_at_timestamp', 0)
days_ago = (current_time - posted_time) / (60 * 60 * 24)
if days_ago > st.session_state.filter_date_posted:
continue
# Check salary filter
if job.get('job_min_salary') is not None and job.get('job_min_salary') < st.session_state.min_salary:
continue
if job.get('job_max_salary') is not None and job.get('job_max_salary') > st.session_state.max_salary:
continue
# Check company type filter
if st.session_state.filter_company_types and job.get('employer_company_type') not in st.session_state.filter_company_types:
continue
# All filters passed, add job to filtered results
filtered_jobs.append(job)
return filtered_jobs
# Main layout
col1, col2 = st.columns([3, 1])
with col1:
# Resume Upload Section
st.markdown('', unsafe_allow_html=True)
st.markdown('Upload your resume to enable AI-powered job matching based on your skills and experience
', unsafe_allow_html=True)
uploaded_file = st.file_uploader("Upload your resume (PDF format)", type=['pdf'])
if uploaded_file is not None:
with st.spinner('Processing your resume...'):
# Extract text from the PDF
resume_text = extract_text_from_pdf(uploaded_file)
st.session_state.resume_text = resume_text
# Parse the resume
parsed_data = parse_resume_with_gemini(resume_text)
st.session_state.parsed_data = parsed_data
st.session_state.resume_parsed = True
# Display success message
st.markdown('Resume successfully parsed!
', unsafe_allow_html=True)
# Display the parsed information
with st.expander("View Parsed Resume Information", expanded=True):
tab1, tab2, tab3 = st.tabs(["Basic Info", "Experience", "Skills & Education"])
with tab1:
# Basic information card
basic_info = parsed_data.get("basic_info", {})
st.markdown('', unsafe_allow_html=True)
col1, col2 = st.columns(2)
with col1:
st.markdown(f"**Name:** {basic_info.get('name', 'Not found')}")
st.markdown(f"**Email:** {basic_info.get('email', 'Not found')}")
with col2:
st.markdown(f"**Phone:** {basic_info.get('phone', 'Not found')}")
st.markdown(f"**Location:** {basic_info.get('location', 'Not found')}")
if parsed_data.get("professional_summary"):
st.markdown("
", unsafe_allow_html=True)
st.markdown("**Professional Summary:**")
st.markdown(parsed_data.get("professional_summary", ""))
st.markdown('', unsafe_allow_html=True)
with tab2:
if parsed_data.get("experience"):
for exp in parsed_data.get("experience", []):
st.markdown('', unsafe_allow_html=True)
st.markdown(f"
{exp.get('job_title', 'Role')}
", unsafe_allow_html=True)
st.markdown(f"
{exp.get('company', 'Company')}
", unsafe_allow_html=True)
st.markdown(f"
{exp.get('duration', 'Duration not specified')}
", unsafe_allow_html=True)
st.markdown(exp.get('description', 'No description available'))
st.markdown('
', unsafe_allow_html=True)
else:
st.info("No experience information found in your resume")
with tab3:
col1, col2 = st.columns(2)
with col1:
st.markdown('', unsafe_allow_html=True)
st.markdown("
Skills")
# Technical skills
st.markdown("**Technical Skills:**")
tech_skills = parsed_data.get("technical_skills", [])
if tech_skills:
for skill in tech_skills:
st.markdown(f"
{skill}", unsafe_allow_html=True)
else:
st.markdown("No technical skills found")
# Soft skills
st.markdown("
**Soft Skills:**
", unsafe_allow_html=True)
soft_skills = parsed_data.get("soft_skills", [])
if soft_skills:
for skill in soft_skills:
st.markdown(f"
{skill}", unsafe_allow_html=True)
else:
st.markdown("No soft skills found")
# General skills
st.markdown("
**General Skills:**
", unsafe_allow_html=True)
skills = parsed_data.get("skills", [])
if skills:
for skill in skills:
st.markdown(f"
{skill}", unsafe_allow_html=True)
else:
st.markdown("No general skills found")
st.markdown(f"
**Years of Experience:** {parsed_data.get('years_of_experience', 'Not specified')}
", unsafe_allow_html=True)
st.markdown('
', unsafe_allow_html=True)
with col2:
st.markdown('', unsafe_allow_html=True)
st.markdown("
Education")
for edu in parsed_data.get("education", []):
st.markdown(f"
", unsafe_allow_html=True)
st.markdown(f"
{edu.get('degree', 'Degree')}
", unsafe_allow_html=True)
st.markdown(f"
{edu.get('institution', 'Institution')}
", unsafe_allow_html=True)
st.markdown(f"
{edu.get('year', 'Year not specified')}
", unsafe_allow_html=True)
st.markdown("
", unsafe_allow_html=True)
# Certifications if available
if parsed_data.get("certifications"):
st.markdown("
", unsafe_allow_html=True)
st.markdown("
Certifications")
for cert in parsed_data.get("certifications", []):
st.markdown(f"• {cert}")
st.markdown('
', unsafe_allow_html=True)
# Job Search Section
st.markdown('', unsafe_allow_html=True)
# Search form with improved styling
st.markdown('', unsafe_allow_html=True)
search_query = st.text_input("Job Title", placeholder="e.g., Python Developer, Product Manager")
col1, col2 = st.columns(2)
with col1:
location = st.text_input("Location", placeholder="e.g., New York, Remote")
with col2:
search_button = st.button("Search Jobs", use_container_width=True)
if st.session_state.resume_parsed:
st.markdown('
Resume skills will be used for job matching
', unsafe_allow_html=True)
st.markdown('
', unsafe_allow_html=True)
if search_button:
if search_query:
with st.spinner('Searching for relevant jobs...'):
# Search for jobs
job_results = search_jobs(search_query, location)
# Store the results in session state
st.session_state.job_results = job_results.get('data', [])
st.session_state.search_completed = True
else:
st.markdown('Please enter a job title to search
', unsafe_allow_html=True)
with col2:
# Filter sidebar
st.markdown('', unsafe_allow_html=True)
st.markdown('', unsafe_allow_html=True)
# Remote work filter
st.checkbox("Remote Only", key="filter_remote_only")
# Employment type filter
st.markdown("
Employment Type
", unsafe_allow_html=True)
employment_types = ["FULLTIME", "PARTTIME", "CONTRACTOR", "INTERN"]
st.multiselect(
"Select types",
employment_types,
default=None,
key="filter_employment_types",
label_visibility="collapsed"
)
# Date posted filter
st.markdown("
Date Posted
", unsafe_allow_html=True)
date_options = {
"Any time": 0,
"Past 24 hours": 1,
"Past week": 7,
"Past month": 30
}
selected_date = st.selectbox(
"Select timeframe",
options=list(date_options.keys()),
index=0,
label_visibility="collapsed"
)
st.session_state.filter_date_posted = date_options[selected_date]
# Salary range filter
st.markdown("
Salary Range
", unsafe_allow_html=True)
col1, col2 = st.columns(2)
with col1:
st.number_input("Min (₹)", value=0, step=10000, key="min_salary")
with col2:
st.number_input("Max (₹)", value=1000000, step=10000, key="max_salary")
# Company type filter
st.markdown("
Company Type
", unsafe_allow_html=True)
company_types = ["Public", "Private", "Nonprofit", "Government", "Startup", "Other"]
st.multiselect(
"Select types",
company_types,
default=None,
key="filter_company_types",
label_visibility="collapsed"
)
st.markdown('
', unsafe_allow_html=True)
# App metrics
st.markdown('', unsafe_allow_html=True)
st.markdown('', unsafe_allow_html=True)
col1, col2 = st.columns(2)
with col1:
if st.session_state.resume_parsed:
skill_count = len(st.session_state.parsed_data.get("skills", [])) + len(st.session_state.parsed_data.get("technical_skills", []))
st.markdown('
', unsafe_allow_html=True)
st.markdown(f'
{skill_count}
', unsafe_allow_html=True)
st.markdown('
Skills
', unsafe_allow_html=True)
st.markdown('
', unsafe_allow_html=True)
else:
st.markdown('
', unsafe_allow_html=True)
st.markdown('
-
', unsafe_allow_html=True)
st.markdown('
Skills
', unsafe_allow_html=True)
st.markdown('
', unsafe_allow_html=True)
with col2:
if st.session_state.search_completed:
job_count = len(st.session_state.job_results)
st.markdown('
', unsafe_allow_html=True)
st.markdown(f'
{job_count}
', unsafe_allow_html=True)
st.markdown('
Jobs
', unsafe_allow_html=True)
st.markdown('
', unsafe_allow_html=True)
else:
st.markdown('
', unsafe_allow_html=True)
st.markdown('
-
', unsafe_allow_html=True)
st.markdown('
Jobs
', unsafe_allow_html=True)
st.markdown('
', unsafe_allow_html=True)
st.markdown('
', unsafe_allow_html=True)
# Display Results
if st.session_state.search_completed:
st.markdown('', unsafe_allow_html=True)
if st.session_state.job_results:
# Apply filters
filtered_jobs = apply_filters(st.session_state.job_results)
if filtered_jobs:
st.markdown(f'Found {len(filtered_jobs)} jobs matching your criteria
', unsafe_allow_html=True)
# Calculate skill match percentages if resume is uploaded
if st.session_state.resume_parsed:
# Extract all skills from resume
tech_skills = set(st.session_state.parsed_data.get("technical_skills", []))
general_skills = set(st.session_state.parsed_data.get("skills", []))
soft_skills = set(st.session_state.parsed_data.get("soft_skills", []))
all_skills = tech_skills.union(general_skills).union(soft_skills)
# Add match score to each job
for job in filtered_jobs:
if job.get('job_description'):
desc = job.get('job_description', '').lower()
matched_skills = [skill for skill in all_skills if skill.lower() in desc]
match_percentage = int((len(matched_skills) / max(1, len(all_skills))) * 100)
job['match_percentage'] = match_percentage
job['matched_skills'] = matched_skills
else:
job['match_percentage'] = 0
job['matched_skills'] = []
# Option to sort by match percentage
col1, col2 = st.columns([1, 2])
with col1:
sort_by_match = st.checkbox("Sort by match percentage", value=True)
if sort_by_match:
filtered_jobs = sorted(filtered_jobs, key=lambda x: x.get('match_percentage', 0), reverse=True)
for job_idx, job in enumerate(filtered_jobs):
# Create a job card
st.markdown('', unsafe_allow_html=True)
# Job header
cols = st.columns([3, 1])
with cols[0]:
if st.session_state.resume_parsed and 'match_percentage' in job:
match_percentage = job.get('match_percentage', 0)
if match_percentage > 70:
match_class = "match-high"
elif match_percentage > 40:
match_class = "match-medium"
else:
match_class = "match-low"
st.markdown(f"
", unsafe_allow_html=True)
st.markdown(f"
{job.get('job_title', 'Job Title Not Available')}
", unsafe_allow_html=True)
st.markdown(f"
{match_percentage}% Match
", unsafe_allow_html=True)
st.markdown("
", unsafe_allow_html=True)
else:
st.markdown(f"
{job.get('job_title', 'Job Title Not Available')}
", unsafe_allow_html=True)
st.markdown(f"
{job.get('employer_name', 'Company Not Available')}
", unsafe_allow_html=True)