import streamlit as st import http.client import json import os import PyPDF2 import io from google import genai import requests from dotenv import load_dotenv import time # Load environment variables from .env file load_dotenv() # Configure page st.set_page_config(page_title="AI Job Finder", page_icon="💼", layout="wide") # Styling st.markdown(""" """, unsafe_allow_html=True) # Header st.markdown('

AI-Powered Job Finder

', unsafe_allow_html=True) st.markdown('

Upload your resume and find relevant jobs tailored to your skills and experience

', unsafe_allow_html=True) # Initialize session state variables if 'resume_text' not in st.session_state: st.session_state.resume_text = "" if 'resume_parsed' not in st.session_state: st.session_state.resume_parsed = False if 'parsed_data' not in st.session_state: st.session_state.parsed_data = {} if 'job_results' not in st.session_state: st.session_state.job_results = [] if 'search_completed' not in st.session_state: st.session_state.search_completed = False # Define the JSON schema for resume parsing RESUME_SCHEMA = { "schema": { "basic_info": { "name": "string", "email": "string", "phone": "string", "location": "string" }, "professional_summary": "string", "skills": ["string"], "technical_skills": ["string"], "soft_skills": ["string"], "experience": [{ "job_title": "string", "company": "string", "duration": "string", "description": "string" }], "education": [{ "degree": "string", "institution": "string", "year": "string" }], "certifications": ["string"], "years_of_experience": "number" } } # Function to extract text from PDF def extract_text_from_pdf(pdf_file): pdf_reader = PyPDF2.PdfReader(pdf_file) text = "" for page_num in range(len(pdf_reader.pages)): text += pdf_reader.pages[page_num].extract_text() return text # Function to parse resume with Gemini def parse_resume_with_gemini(resume_text): try: # Configure the Gemini API client = genai.Client(api_key=os.getenv('GEMINI_API_KEY')) # Construct the prompt with schema prompt = f""" Parse the following resume text and extract information according to this exact JSON schema: {json.dumps(RESUME_SCHEMA, indent=2)} Resume text: {resume_text} Make sure to follow the schema exactly. If any information is not available, use empty strings or empty arrays as appropriate. Return ONLY the JSON object with no additional text. """ # Generate the response response = client.models.generate_content(model="gemini-2.0-flash", contents=prompt) # Parse the response to get JSON try: parsed_data = json.loads(response.text) return parsed_data except json.JSONDecodeError: # Try to extract JSON from the text if not directly parseable import re json_match = re.search(r'```json\n(.*?)\n```', response.text, re.DOTALL) if json_match: return json.loads(json_match.group(1)) else: st.error("Could not parse the response as JSON") return RESUME_SCHEMA["schema"] except Exception as e: st.error(f"Error parsing resume: {str(e)}") return RESUME_SCHEMA["schema"] # Function to search for jobs def search_jobs(query, location="", page=1): try: conn = http.client.HTTPSConnection("jsearch.p.rapidapi.com") # Format the query string search_query = query.replace(" ", "%20") if location: search_query += f"%20in%20{location.replace(' ', '%20')}" headers = { 'X-RapidAPI-Key': os.getenv('RAPIDAPI_KEY'), 'X-RapidAPI-Host': "jsearch.p.rapidapi.com" } conn.request("GET", f"/search?query={search_query}&page={page}&num_pages=1", headers=headers) res = conn.getresponse() data = res.read() return json.loads(data.decode("utf-8")) except Exception as e: st.error(f"Error searching for jobs: {str(e)}") return {"data": []} if 'filter_remote_only' not in st.session_state: st.session_state.filter_remote_only = False if 'filter_employment_types' not in st.session_state: st.session_state.filter_employment_types = [] if 'filter_date_posted' not in st.session_state: st.session_state.filter_date_posted = 0 if 'min_salary' not in st.session_state: st.session_state.min_salary = 0 if 'max_salary' not in st.session_state: st.session_state.max_salary = 1000000 if 'filter_company_types' not in st.session_state: st.session_state.filter_company_types = [] # Function to apply filters to job results def apply_filters(jobs): filtered_jobs = [] for job in jobs: # Check remote filter if st.session_state.filter_remote_only and not job.get('job_is_remote', False): continue # Check employment type filter if st.session_state.filter_employment_types and job.get('job_employment_type') not in st.session_state.filter_employment_types: continue # Check date posted filter (in days) if st.session_state.filter_date_posted > 0: current_time = int(time.time()) posted_time = job.get('job_posted_at_timestamp', 0) days_ago = (current_time - posted_time) / (60 * 60 * 24) if days_ago > st.session_state.filter_date_posted: continue # Check salary filter if job.get('job_min_salary') is not None and job.get('job_min_salary') < st.session_state.min_salary: continue if job.get('job_max_salary') is not None and job.get('job_max_salary') > st.session_state.max_salary: continue # Check company type filter if st.session_state.filter_company_types and job.get('employer_company_type') not in st.session_state.filter_company_types: continue # All filters passed, add job to filtered results filtered_jobs.append(job) return filtered_jobs # Main layout col1, col2 = st.columns([3, 1]) with col1: # Resume Upload Section st.markdown('

📄 Upload Your Resume

', unsafe_allow_html=True) st.markdown('
Upload your resume to enable AI-powered job matching based on your skills and experience
', unsafe_allow_html=True) uploaded_file = st.file_uploader("Upload your resume (PDF format)", type=['pdf']) if uploaded_file is not None: with st.spinner('Processing your resume...'): # Extract text from the PDF resume_text = extract_text_from_pdf(uploaded_file) st.session_state.resume_text = resume_text # Parse the resume parsed_data = parse_resume_with_gemini(resume_text) st.session_state.parsed_data = parsed_data st.session_state.resume_parsed = True # Display success message st.markdown('
Resume successfully parsed!
', unsafe_allow_html=True) # Display the parsed information with st.expander("View Parsed Resume Information", expanded=True): tab1, tab2, tab3 = st.tabs(["Basic Info", "Experience", "Skills & Education"]) with tab1: # Basic information card basic_info = parsed_data.get("basic_info", {}) st.markdown('
', unsafe_allow_html=True) col1, col2 = st.columns(2) with col1: st.markdown(f"**Name:** {basic_info.get('name', 'Not found')}") st.markdown(f"**Email:** {basic_info.get('email', 'Not found')}") with col2: st.markdown(f"**Phone:** {basic_info.get('phone', 'Not found')}") st.markdown(f"**Location:** {basic_info.get('location', 'Not found')}") if parsed_data.get("professional_summary"): st.markdown("
", unsafe_allow_html=True) st.markdown("**Professional Summary:**") st.markdown(parsed_data.get("professional_summary", "")) st.markdown('
', unsafe_allow_html=True) with tab2: if parsed_data.get("experience"): for exp in parsed_data.get("experience", []): st.markdown('
', unsafe_allow_html=True) st.markdown(f"
{exp.get('job_title', 'Role')}
", unsafe_allow_html=True) st.markdown(f"
{exp.get('company', 'Company')}
", unsafe_allow_html=True) st.markdown(f"
{exp.get('duration', 'Duration not specified')}
", unsafe_allow_html=True) st.markdown(exp.get('description', 'No description available')) st.markdown('
', unsafe_allow_html=True) else: st.info("No experience information found in your resume") with tab3: col1, col2 = st.columns(2) with col1: st.markdown('
', unsafe_allow_html=True) st.markdown("Skills") # Technical skills st.markdown("**Technical Skills:**") tech_skills = parsed_data.get("technical_skills", []) if tech_skills: for skill in tech_skills: st.markdown(f"{skill}", unsafe_allow_html=True) else: st.markdown("No technical skills found") # Soft skills st.markdown("
**Soft Skills:**
", unsafe_allow_html=True) soft_skills = parsed_data.get("soft_skills", []) if soft_skills: for skill in soft_skills: st.markdown(f"{skill}", unsafe_allow_html=True) else: st.markdown("No soft skills found") # General skills st.markdown("
**General Skills:**
", unsafe_allow_html=True) skills = parsed_data.get("skills", []) if skills: for skill in skills: st.markdown(f"{skill}", unsafe_allow_html=True) else: st.markdown("No general skills found") st.markdown(f"
**Years of Experience:** {parsed_data.get('years_of_experience', 'Not specified')}
", unsafe_allow_html=True) st.markdown('
', unsafe_allow_html=True) with col2: st.markdown('
', unsafe_allow_html=True) st.markdown("Education") for edu in parsed_data.get("education", []): st.markdown(f"
", unsafe_allow_html=True) st.markdown(f"
{edu.get('degree', 'Degree')}
", unsafe_allow_html=True) st.markdown(f"
{edu.get('institution', 'Institution')}
", unsafe_allow_html=True) st.markdown(f"
{edu.get('year', 'Year not specified')}
", unsafe_allow_html=True) st.markdown("
", unsafe_allow_html=True) # Certifications if available if parsed_data.get("certifications"): st.markdown("
", unsafe_allow_html=True) st.markdown("Certifications") for cert in parsed_data.get("certifications", []): st.markdown(f"• {cert}") st.markdown('
', unsafe_allow_html=True) # Job Search Section st.markdown('

🔍 Search for Jobs

', unsafe_allow_html=True) # Search form with improved styling st.markdown('
', unsafe_allow_html=True) search_query = st.text_input("Job Title", placeholder="e.g., Python Developer, Product Manager") col1, col2 = st.columns(2) with col1: location = st.text_input("Location", placeholder="e.g., New York, Remote") with col2: search_button = st.button("Search Jobs", use_container_width=True) if st.session_state.resume_parsed: st.markdown('
Resume skills will be used for job matching
', unsafe_allow_html=True) st.markdown('
', unsafe_allow_html=True) if search_button: if search_query: with st.spinner('Searching for relevant jobs...'): # Search for jobs job_results = search_jobs(search_query, location) # Store the results in session state st.session_state.job_results = job_results.get('data', []) st.session_state.search_completed = True else: st.markdown('
Please enter a job title to search
', unsafe_allow_html=True) with col2: # Filter sidebar st.markdown('

⚙️ Filters

', unsafe_allow_html=True) st.markdown('
', unsafe_allow_html=True) # Remote work filter st.checkbox("Remote Only", key="filter_remote_only") # Employment type filter st.markdown("
Employment Type
", unsafe_allow_html=True) employment_types = ["FULLTIME", "PARTTIME", "CONTRACTOR", "INTERN"] st.multiselect( "Select types", employment_types, default=None, key="filter_employment_types", label_visibility="collapsed" ) # Date posted filter st.markdown("
Date Posted
", unsafe_allow_html=True) date_options = { "Any time": 0, "Past 24 hours": 1, "Past week": 7, "Past month": 30 } selected_date = st.selectbox( "Select timeframe", options=list(date_options.keys()), index=0, label_visibility="collapsed" ) st.session_state.filter_date_posted = date_options[selected_date] # Salary range filter st.markdown("
Salary Range
", unsafe_allow_html=True) col1, col2 = st.columns(2) with col1: st.number_input("Min (₹)", value=0, step=10000, key="min_salary") with col2: st.number_input("Max (₹)", value=1000000, step=10000, key="max_salary") # Company type filter st.markdown("
Company Type
", unsafe_allow_html=True) company_types = ["Public", "Private", "Nonprofit", "Government", "Startup", "Other"] st.multiselect( "Select types", company_types, default=None, key="filter_company_types", label_visibility="collapsed" ) st.markdown('
', unsafe_allow_html=True) # App metrics st.markdown('

📊 Stats

', unsafe_allow_html=True) st.markdown('
', unsafe_allow_html=True) col1, col2 = st.columns(2) with col1: if st.session_state.resume_parsed: skill_count = len(st.session_state.parsed_data.get("skills", [])) + len(st.session_state.parsed_data.get("technical_skills", [])) st.markdown('
', unsafe_allow_html=True) st.markdown(f'
{skill_count}
', unsafe_allow_html=True) st.markdown('
Skills
', unsafe_allow_html=True) st.markdown('
', unsafe_allow_html=True) else: st.markdown('
', unsafe_allow_html=True) st.markdown('
-
', unsafe_allow_html=True) st.markdown('
Skills
', unsafe_allow_html=True) st.markdown('
', unsafe_allow_html=True) with col2: if st.session_state.search_completed: job_count = len(st.session_state.job_results) st.markdown('
', unsafe_allow_html=True) st.markdown(f'
{job_count}
', unsafe_allow_html=True) st.markdown('
Jobs
', unsafe_allow_html=True) st.markdown('
', unsafe_allow_html=True) else: st.markdown('
', unsafe_allow_html=True) st.markdown('
-
', unsafe_allow_html=True) st.markdown('
Jobs
', unsafe_allow_html=True) st.markdown('
', unsafe_allow_html=True) st.markdown('
', unsafe_allow_html=True) # Display Results if st.session_state.search_completed: st.markdown('

🎯 Job Matches

', unsafe_allow_html=True) if st.session_state.job_results: # Apply filters filtered_jobs = apply_filters(st.session_state.job_results) if filtered_jobs: st.markdown(f'
Found {len(filtered_jobs)} jobs matching your criteria
', unsafe_allow_html=True) # Calculate skill match percentages if resume is uploaded if st.session_state.resume_parsed: # Extract all skills from resume tech_skills = set(st.session_state.parsed_data.get("technical_skills", [])) general_skills = set(st.session_state.parsed_data.get("skills", [])) soft_skills = set(st.session_state.parsed_data.get("soft_skills", [])) all_skills = tech_skills.union(general_skills).union(soft_skills) # Add match score to each job for job in filtered_jobs: if job.get('job_description'): desc = job.get('job_description', '').lower() matched_skills = [skill for skill in all_skills if skill.lower() in desc] match_percentage = int((len(matched_skills) / max(1, len(all_skills))) * 100) job['match_percentage'] = match_percentage job['matched_skills'] = matched_skills else: job['match_percentage'] = 0 job['matched_skills'] = [] # Option to sort by match percentage col1, col2 = st.columns([1, 2]) with col1: sort_by_match = st.checkbox("Sort by match percentage", value=True) if sort_by_match: filtered_jobs = sorted(filtered_jobs, key=lambda x: x.get('match_percentage', 0), reverse=True) for job_idx, job in enumerate(filtered_jobs): # Create a job card st.markdown('
', unsafe_allow_html=True) # Job header cols = st.columns([3, 1]) with cols[0]: if st.session_state.resume_parsed and 'match_percentage' in job: match_percentage = job.get('match_percentage', 0) if match_percentage > 70: match_class = "match-high" elif match_percentage > 40: match_class = "match-medium" else: match_class = "match-low" st.markdown(f"
", unsafe_allow_html=True) st.markdown(f"
{job.get('job_title', 'Job Title Not Available')}
", unsafe_allow_html=True) st.markdown(f"
{match_percentage}% Match
", unsafe_allow_html=True) st.markdown("
", unsafe_allow_html=True) else: st.markdown(f"
{job.get('job_title', 'Job Title Not Available')}
", unsafe_allow_html=True) st.markdown(f"
{job.get('employer_name', 'Company Not Available')}
", unsafe_allow_html=True)