# Copyright (c) Meta Platforms, Inc. and affiliates import argparse def get_default_params(model_name): # Params from paper (https://arxiv.org/pdf/2103.00020.pdf) model_name = model_name.lower() if "vit" in model_name: return {"lr": 5.0e-4, "beta1": 0.9, "beta2": 0.98, "eps": 1.0e-6} else: return {"lr": 5.0e-4, "beta1": 0.9, "beta2": 0.999, "eps": 1.0e-8} def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( "--train-data", type=str, default=None, help="Path to csv filewith training data", ) parser.add_argument( "--val-data", type=str, default=None, help="Path to csv file with validation data", ) parser.add_argument( "--train-num-samples", type=int, default=None, help="Number of samples in dataset. Required for webdataset if not available in info file.", ) parser.add_argument( "--val-num-samples", type=int, default=None, help="Number of samples in dataset. Useful for webdataset if not available in info file.", ) parser.add_argument( "--dataset-type", choices=["webdataset", "csv", "auto"], default="auto", help="Which type of dataset to process." ) parser.add_argument( "--dataset-resampled", default=False, action="store_true", help="Whether to use sampling with replacement for webdataset shard selection." ) parser.add_argument( "--csv-separator", type=str, default="\t", help="For csv-like datasets, which separator to use." ) parser.add_argument( "--csv-img-key", type=str, default="filepath", help="For csv-like datasets, the name of the key for the image paths." ) parser.add_argument( "--csv-caption-key", type=str, default="title", help="For csv-like datasets, the name of the key for the captions." ) parser.add_argument( "--imagenet-val", type=str, default=None, help="Path to imagenet val set for conducting zero shot evaluation.", ) parser.add_argument( "--imagenet-v2", type=str, default=None, help="Path to imagenet v2 for conducting zero shot evaluation.", ) parser.add_argument( "--logs", type=str, default="./logs/", help="Where to store tensorboard logs. Use None to avoid storing logs.", ) parser.add_argument( "--log-local", action="store_true", default=False, help="log files on local master, otherwise global master only.", ) parser.add_argument( "--name", type=str, default=None, help="Optional identifier for the experiment when storing logs. Otherwise use current time.", ) parser.add_argument( "--workers", type=int, default=1, help="Number of dataloader workers per GPU." ) parser.add_argument( "--batch-size", type=int, default=64, help="Batch size per GPU." ) parser.add_argument( "--epochs", type=int, default=32, help="Number of epochs to train for." ) parser.add_argument("--lr", type=float, default=None, help="Learning rate.") parser.add_argument("--beta1", type=float, default=None, help="Adam beta 1.") parser.add_argument("--beta2", type=float, default=None, help="Adam beta 2.") parser.add_argument("--eps", type=float, default=None, help="Adam epsilon.") parser.add_argument("--wd", type=float, default=0.2, help="Weight decay.") parser.add_argument( "--warmup", type=int, default=10000, help="Number of steps to warmup for." ) parser.add_argument( "--use-bn-sync", default=False, action="store_true", help="Whether to use batch norm sync.") parser.add_argument( "--skip-scheduler", action="store_true", default=False, help="Use this flag to skip the learning rate decay.", ) parser.add_argument( "--save-frequency", type=int, default=1, help="How often to save checkpoints." ) parser.add_argument( "--save-most-recent", action="store_true", default=False, help="Always save the most recent model trained to epoch_latest.pt.", ) parser.add_argument( "--zeroshot-frequency", type=int, default=2, help="How often to run zero shot." ) parser.add_argument( "--val-frequency", type=int, default=1, help="How often to run evaluation with val data." ) parser.add_argument( "--resume", default=None, type=str, help="path to latest checkpoint (default: none)", ) parser.add_argument( "--precision", choices=["amp", "fp16", "fp32"], default="amp", help="Floating point precision." ) parser.add_argument( "--model", type=str, default="RN50", help="Name of the vision backbone to use.", ) parser.add_argument( "--pretrained", default='', type=str, help="Use a pretrained CLIP model weights with the specified tag or file path.", ) parser.add_argument( "--pretrained-image", default=False, action='store_true', help="Load imagenet pretrained weights for image tower backbone if available.", ) parser.add_argument( "--lock-image", default=False, action='store_true', help="Lock full image tower by disabling gradients.", ) parser.add_argument( "--lock-image-unlocked-groups", type=int, default=0, help="Leave last n image tower layer groups unlocked.", ) parser.add_argument( "--lock-image-freeze-bn-stats", default=False, action='store_true', help="Freeze BatchNorm running stats in image tower for any locked layers.", ) parser.add_argument( "--grad-checkpointing", default=False, action='store_true', help="Enable gradient checkpointing.", ) parser.add_argument( "--local-loss", default=False, action="store_true", help="calculate loss w/ local features @ global (instead of realizing full global @ global matrix)" ) parser.add_argument( "--gather-with-grad", default=False, action="store_true", help="enable full distributed gradient for feature gather" ) parser.add_argument( "--force-quick-gelu", default=False, action='store_true', help="Force use of QuickGELU activation for non-OpenAI transformer models.", ) parser.add_argument( "--torchscript", default=False, action='store_true', help="torch.jit.script the model, also uses jit version of OpenAI models if pretrained=='openai'", ) parser.add_argument( "--trace", default=False, action='store_true', help="torch.jit.trace the model for inference / eval only", ) # arguments for distributed training parser.add_argument( "--dist-url", default="env://", type=str, help="url used to set up distributed training", ) parser.add_argument( "--dist-backend", default="nccl", type=str, help="distributed backend" ) parser.add_argument( "--report-to", default='', type=str, help="Options are ['wandb', 'tensorboard', 'wandb,tensorboard']" ) parser.add_argument( "--wandb-notes", default='', type=str, help="Notes if logging with wandb" ) parser.add_argument( "--debug", default=False, action="store_true", help="If true, more information is logged." ) parser.add_argument( "--copy-codebase", default=False, action="store_true", help="If true, we copy the entire base on the log diretory, and execute from there." ) parser.add_argument( "--horovod", default=False, action="store_true", help="Use horovod for distributed training." ) parser.add_argument( "--ddp-static-graph", default=False, action='store_true', help="Enable static graph optimization for DDP in PyTorch >= 1.11.", ) parser.add_argument( "--no-set-device-rank", default=False, action="store_true", help="Don't set device index from local rank (when CUDA_VISIBLE_DEVICES restricted to one per proc)." ) parser.add_argument( "--seed", type=int, default=0, help="Default random seed." ) parser.add_argument( "--norm_gradient_clip", type=float, default=None, help="Gradient clip." ) args = parser.parse_args() # If some params are not passed, we use the default values based on model name. default_params = get_default_params(args.model) for name, val in default_params.items(): if getattr(args, name) is None: setattr(args, name, val) return args