# Copyright (c) Meta Platforms, Inc. and affiliates import os import torch try: import horovod.torch as hvd except ImportError: hvd = None def is_global_master(args): return args.rank == 0 def is_local_master(args): return args.local_rank == 0 def is_master(args, local=False): return is_local_master(args) if local else is_global_master(args) def is_using_horovod(): # NOTE w/ horovod run, OMPI vars should be set, but w/ SLURM PMI vars will be set # Differentiating between horovod and DDP use via SLURM may not be possible, so horovod arg still required... ompi_vars = ["OMPI_COMM_WORLD_RANK", "OMPI_COMM_WORLD_SIZE"] pmi_vars = ["PMI_RANK", "PMI_SIZE"] if all([var in os.environ for var in ompi_vars]) or all([var in os.environ for var in pmi_vars]): return True else: return False def is_using_distributed(): if 'WORLD_SIZE' in os.environ: return int(os.environ['WORLD_SIZE']) > 1 if 'SLURM_NTASKS' in os.environ: return int(os.environ['SLURM_NTASKS']) > 1 return False def world_info_from_env(): local_rank = 0 for v in ('LOCAL_RANK', 'MPI_LOCALRANKID', 'SLURM_LOCALID', 'OMPI_COMM_WORLD_LOCAL_RANK'): if v in os.environ: local_rank = int(os.environ[v]) break global_rank = 0 for v in ('RANK', 'PMI_RANK', 'SLURM_PROCID', 'OMPI_COMM_WORLD_RANK'): if v in os.environ: global_rank = int(os.environ[v]) break world_size = 1 for v in ('WORLD_SIZE', 'PMI_SIZE', 'SLURM_NTASKS', 'OMPI_COMM_WORLD_SIZE'): if v in os.environ: world_size = int(os.environ[v]) break return local_rank, global_rank, world_size def init_distributed_device(args): # Distributed training = training on more than one GPU. # Works in both single and multi-node scenarios. args.distributed = False args.world_size = 1 args.rank = 0 # global rank args.local_rank = 0 if args.horovod: assert hvd is not None, "Horovod is not installed" hvd.init() args.local_rank = int(hvd.local_rank()) args.rank = hvd.rank() args.world_size = hvd.size() args.distributed = True os.environ['LOCAL_RANK'] = str(args.local_rank) os.environ['RANK'] = str(args.rank) os.environ['WORLD_SIZE'] = str(args.world_size) elif is_using_distributed(): if 'SLURM_PROCID' in os.environ: # DDP via SLURM args.local_rank, args.rank, args.world_size = world_info_from_env() # SLURM var -> torch.distributed vars in case needed os.environ['LOCAL_RANK'] = str(args.local_rank) os.environ['RANK'] = str(args.rank) os.environ['WORLD_SIZE'] = str(args.world_size) from datetime import timedelta timeout = timedelta(seconds=3600) # default_pg_timeout is timedelta(seconds=1800) torch.distributed.init_process_group( backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank, timeout=timeout, ) else: # DDP via torchrun, torch.distributed.launch args.local_rank, _, _ = world_info_from_env() torch.distributed.init_process_group( backend=args.dist_backend, init_method=args.dist_url) args.world_size = torch.distributed.get_world_size() args.rank = torch.distributed.get_rank() args.distributed = True if torch.cuda.is_available(): if args.distributed and not args.no_set_device_rank: """# proposed to be consistent with AdaCLIP. device = args.rank % torch.cuda.device_count() """ device = 'cuda:%d' % args.local_rank else: device = 'cuda:0' torch.cuda.set_device(device) else: device = 'cpu' args.device = device device = torch.device(device) return device