# Copyright (c) Meta Platforms, Inc. and affiliates import ast import json import logging import math import os import random import sys from dataclasses import dataclass from multiprocessing import Value import braceexpand import numpy as np import pandas as pd import torch import torchvision.datasets as datasets import webdataset as wds from PIL import Image from torch.utils.data import Dataset, DataLoader, SubsetRandomSampler, IterableDataset, get_worker_info from torch.utils.data.distributed import DistributedSampler from webdataset.filters import _shuffle from webdataset.tariterators import base_plus_ext, url_opener, tar_file_expander, valid_sample from open_clip import HFTokenizer try: import horovod.torch as hvd except ImportError: hvd = None tokenizer = None def set_tokenizer_value(context_length_from_args, encoder_name): tokenizer_kwargs = {} global tokenizer tokenizer = HFTokenizer( encoder_name, context_length=context_length_from_args, **tokenizer_kwargs, ) class CsvDataset(Dataset): def __init__(self, input_filename, transforms, img_key, caption_key, sep="\t"): logging.debug(f'Loading csv data from {input_filename}.') df = pd.read_csv(input_filename, sep=sep) self.images = df[img_key].tolist() self.captions = df[caption_key].tolist() self.transforms = transforms logging.debug('Done loading data.') def __len__(self): return len(self.captions) def __getitem__(self, idx): images = self.transforms(Image.open(str(self.images[idx]))) texts = tokenize([str(self.captions[idx])])[0] return images, texts class SharedEpoch: def __init__(self, epoch: int = 0): self.shared_epoch = Value('i', epoch) def set_value(self, epoch): self.shared_epoch.value = epoch def get_value(self): return self.shared_epoch.value @dataclass class DataInfo: dataloader: DataLoader sampler: DistributedSampler = None shared_epoch: SharedEpoch = None def set_epoch(self, epoch, step=0): if self.shared_epoch is not None: self.shared_epoch.set_value(epoch) if self.sampler is not None and isinstance(self.sampler, DistributedSampler): self.sampler.set_epoch(epoch) if hasattr(self.dataloader, "dataset") and hasattr(self.dataloader.dataset, "set_epoch"): self.dataloader.dataset.set_epoch(epoch, self.dataloader.num_batches, step) # Change the below to randomly sample a single text from the code def preprocess_txt(text): return tokenizer([str(text)])[0] def preprocess_txt_rad(text): # Each text has 10 captions, so randomly get one if "_radimagenet_" in text: text = text.split("_radimagenet_")[0:10] final_text = random.choice(text) elif "_chexpert_" in text: text = text.split("_chexpert_")[0:10] final_text = random.choice(text) # total 10 are present only elif "_openi_" in text: # total 3 templates + 1 original caption all_text_list = text.split("_openi_")[0:4] # remove the empty string original = True if original: final_text = all_text_list[0] else: final_text = random.choice(all_text_list[1:4]) elif "_chestxray8_" in text: text = text.split("_chestxray8_")[0:10] final_text = random.choice(text) # total 10 are present only elif "_all_retina_merged_" in text: text = text.split("_all_retina_merged_")[0:10] # ideally this should be [0:11], # but we are ignoring the sentence level template caption final_text = random.choice(text) # total 10 are present only elif "_dr_" in text: text = text.split("_dr_")[0:15] final_text = random.choice(text) # total 15 are present only elif "_medicat_" in text: text = text.split("_medicat_") if text[1] == 'nothingpresent': final_text = text[0] else: final_text = random.choice(text) # total 2 are present only elif "_mimiccxr_" in text: # total 3 templates + 1 original caption all_text = text.split("_mimiccxr_") my_templates = all_text[0:10] # remove the empty string my_caption = all_text[-1] original = True if original: if my_caption == 'noreportpresent': final_text = random.choice(my_templates) else: final_text = my_caption else: final_text = random.choice(my_templates) else: # Means only original text pairs are available # Will be suitable for llava datasets, quilt datasets final_text = text return tokenizer([str(final_text)])[0] def expand_urls(urls, weights=None): if weights is None: expanded_urls = wds.shardlists.expand_urls(urls) return expanded_urls, None if isinstance(urls, str): urllist = urls.split("::") weights = weights.split('::') assert len(weights) == len(urllist),\ f"Expected the number of data components ({len(urllist)}) and weights({len(weights)}) to match." weights = [float(weight) for weight in weights] all_urls, all_weights = [], [] for url, weight in zip(urllist, weights): expanded_url = list(braceexpand.braceexpand(url)) expanded_weights = [weight for _ in expanded_url] all_urls.extend(expanded_url) all_weights.extend(expanded_weights) return all_urls, all_weights else: all_urls = list(urls) return all_urls, weights def get_dataset_size(shards): shards_list, _ = expand_urls(shards) dir_path = os.path.dirname(shards_list[0]) sizes_filename = os.path.join(dir_path, 'sizes.json') len_filename = os.path.join(dir_path, '__len__') if os.path.exists(sizes_filename): sizes = json.load(open(sizes_filename, 'r')) total_size = sum([int(sizes[os.path.basename(shard)]) for shard in shards_list]) elif os.path.exists(len_filename): # FIXME this used to be eval(open(...)) but that seemed rather unsafe total_size = ast.literal_eval(open(len_filename, 'r').read()) else: total_size = None # num samples undefined # some common dataset sizes (at time of authors last download) # CC3M (train): 2905954 # CC12M: 10968539 # LAION-400M: 407332084 # LAION-2B (english): 2170337258 num_shards = len(shards_list) return total_size, num_shards def get_imagenet(args, preprocess_fns, split): assert split in ["train", "val", "v2"] is_train = split == "train" preprocess_train, preprocess_val = preprocess_fns if split == "v2": from imagenetv2_pytorch import ImageNetV2Dataset dataset = ImageNetV2Dataset(location=args.imagenet_v2, transform=preprocess_val) else: if is_train: data_path = args.imagenet_train preprocess_fn = preprocess_train else: data_path = args.imagenet_val preprocess_fn = preprocess_val assert data_path dataset = datasets.ImageFolder(data_path, transform=preprocess_fn) if is_train: idxs = np.zeros(len(dataset.targets)) target_array = np.array(dataset.targets) k = 50 for c in range(1000): m = target_array == c n = len(idxs[m]) arr = np.zeros(n) arr[:k] = 1 np.random.shuffle(arr) idxs[m] = arr idxs = idxs.astype('int') sampler = SubsetRandomSampler(np.where(idxs)[0]) else: sampler = None dataloader = torch.utils.data.DataLoader( dataset, batch_size=args.batch_size, num_workers=args.workers, sampler=sampler, ) return DataInfo(dataloader=dataloader, sampler=sampler) def count_samples(dataloader): os.environ["WDS_EPOCH"] = "0" n_elements, n_batches = 0, 0 for images, texts in dataloader: n_batches += 1 n_elements += len(images) assert len(images) == len(texts) return n_elements, n_batches def filter_no_caption(sample): return 'txt' in sample def log_and_continue(exn): """Call in an exception handler to ignore any exception, isssue a warning, and continue.""" logging.warning(f'Handling webdataset error ({repr(exn)}). Ignoring.') return True def group_by_keys_nothrow(data, keys=base_plus_ext, lcase=True, suffixes=None, handler=None): """Return function over iterator that groups key, value pairs into samples. :param keys: function that splits the key into key and extension (base_plus_ext) :param lcase: convert suffixes to lower case (Default value = True) """ current_sample = None for filesample in data: assert isinstance(filesample, dict) fname, value = filesample["fname"], filesample["data"] prefix, suffix = keys(fname) if prefix is None: continue if lcase: suffix = suffix.lower() # FIXME webdataset version throws if suffix in current_sample, but we have a potential for # this happening in the current LAION400m dataset if a tar ends with same prefix as the next # begins, rare, but can happen since prefix aren't unique across tar files in that dataset if current_sample is None or prefix != current_sample["__key__"] or suffix in current_sample: if valid_sample(current_sample): yield current_sample current_sample = dict(__key__=prefix, __url__=filesample["__url__"]) if suffixes is None or suffix in suffixes: current_sample[suffix] = value if valid_sample(current_sample): yield current_sample def tarfile_to_samples_nothrow(src, handler=log_and_continue): # NOTE this is a re-impl of the webdataset impl with group_by_keys that doesn't throw streams = url_opener(src, handler=handler) files = tar_file_expander(streams, handler=handler) samples = group_by_keys_nothrow(files, handler=handler) return samples def pytorch_worker_seed(): """get dataloader worker seed from pytorch""" worker_info = get_worker_info() if worker_info is not None: # favour the seed already created for pytorch dataloader workers if it exists return worker_info.seed # fallback to wds rank based seed return wds.utils.pytorch_worker_seed() _SHARD_SHUFFLE_SIZE = 2000 _SHARD_SHUFFLE_INITIAL = 500 _SAMPLE_SHUFFLE_SIZE = 5000 _SAMPLE_SHUFFLE_INITIAL = 1000 class detshuffle2(wds.PipelineStage): def __init__( self, bufsize=1000, initial=100, seed=0, epoch=-1, ): self.bufsize = bufsize self.initial = initial self.seed = seed self.epoch = epoch def run(self, src): if isinstance(self.epoch, SharedEpoch): epoch = self.epoch.get_value() else: # NOTE: this is epoch tracking is problematic in a multiprocess (dataloader workers or train) # situation as different workers may wrap at different times (or not at all). self.epoch += 1 epoch = self.epoch rng = random.Random() if self.seed < 0: seed = pytorch_worker_seed() + epoch else: seed = self.seed + epoch rng.seed(seed) return _shuffle(src, self.bufsize, self.initial, rng) class ResampledShards2(IterableDataset): """An iterable dataset yielding a list of urls.""" def __init__( self, urls, weights=None, nshards=sys.maxsize, worker_seed=None, deterministic=False, epoch=-1, ): """Sample shards from the shard list with replacement. :param urls: a list of URLs as a Python list or brace notation string """ super().__init__() urls, weights = expand_urls(urls, weights) self.urls = urls self.weights = weights if self.weights is not None: assert len(self.urls) == len(self.weights),\ f"Number of urls {len(self.urls)} and weights {len(self.weights)} should match." assert isinstance(self.urls[0], str) self.nshards = nshards self.rng = random.Random() self.worker_seed = pytorch_worker_seed if worker_seed is None else worker_seed self.deterministic = deterministic self.epoch = epoch def __iter__(self): """Return an iterator over the shards.""" if isinstance(self.epoch, SharedEpoch): epoch = self.epoch.get_value() else: # NOTE: this is epoch tracking is problematic in a multiprocess (dataloader workers or train) # situation as different workers may wrap at different times (or not at all). self.epoch += 1 epoch = self.epoch if self.deterministic: # reset seed w/ epoch if deterministic, worker seed should be deterministic due to arg.seed self.rng.seed(self.worker_seed() + epoch) for _ in range(self.nshards): if self.weights is None: yield dict(url=self.rng.choice(self.urls)) else: yield dict(url=self.rng.choices(self.urls, weights=self.weights, k=1)[0]) def get_wds_dataset(args, preprocess_img, is_train, epoch=0, floor=False): input_shards = args.train_data if is_train else args.val_data assert input_shards is not None resampled = getattr(args, 'dataset_resampled', False) and is_train num_samples, num_shards = get_dataset_size(input_shards) if not num_samples: if is_train: num_samples = args.train_num_samples if not num_samples: raise RuntimeError( 'Currently, number of dataset samples must be specified for training dataset. ' 'Please specify via `--train-num-samples` if no dataset length info present.') else: num_samples = args.val_num_samples or 0 # eval will just exhaust the iterator if not specified shared_epoch = SharedEpoch(epoch=epoch) # create a shared epoch store to sync epoch to dataloader worker proc if resampled: pipeline = [ResampledShards2(input_shards, weights=args.train_data_upsampling_factors, deterministic=True, epoch=shared_epoch)] else: pipeline = [wds.SimpleShardList(input_shards, seed=1)] # make the urls random... # Set tokenizer function global variable set_tokenizer_value(args.tokenizer_context_length, args.text_encoder_model_name) # at this point we have an iterator over all the shards if is_train: if not resampled: pipeline.extend([ detshuffle2( bufsize=_SHARD_SHUFFLE_SIZE, initial=_SHARD_SHUFFLE_INITIAL, seed=args.seed, epoch=shared_epoch, ), wds.split_by_node, wds.split_by_worker, ]) pipeline.extend([ # at this point, we have an iterator over the shards assigned to each worker at each node tarfile_to_samples_nothrow, # wds.tarfile_to_samples(handler=log_and_continue), wds.shuffle( bufsize=_SAMPLE_SHUFFLE_SIZE, initial=_SAMPLE_SHUFFLE_INITIAL, ), ]) else: pipeline.extend([ wds.split_by_worker, # at this point, we have an iterator over the shards assigned to each worker wds.tarfile_to_samples(handler=log_and_continue), ]) pipeline.extend([ wds.select(filter_no_caption), wds.decode("pilrgb", handler=log_and_continue), wds.rename(image="jpg;png", text="txt"), wds.map_dict(image=preprocess_img, text=preprocess_txt_rad if "radimagenet" not in input_shards else preprocess_txt_rad), wds.to_tuple("image", "text"), wds.batched(args.batch_size, partial=not is_train), ]) dataset = wds.DataPipeline(*pipeline) if is_train: if not resampled: assert num_shards >= args.workers * args.world_size, 'number of shards must be >= total workers' # roll over and repeat a few samples to get same number of full batches on each node round_fn = math.floor if floor else math.ceil global_batch_size = args.batch_size * args.world_size num_batches = round_fn(num_samples / global_batch_size) num_workers = max(1, args.workers) num_worker_batches = round_fn(num_batches / num_workers) # per dataloader worker num_batches = num_worker_batches * num_workers num_samples = num_batches * global_batch_size dataset = dataset.with_epoch(num_worker_batches) # each worker is iterating over this else: # last batches are partial, eval is done on single (master) node num_batches = math.ceil(num_samples / args.batch_size) dataloader = wds.WebLoader( dataset, batch_size=None, shuffle=False, num_workers=args.workers, persistent_workers=True, ) # FIXME not clear which approach is better, with_epoch before vs after dataloader? # hoping to resolve via https://github.com/webdataset/webdataset/issues/169 # if is_train: # # roll over and repeat a few samples to get same number of full batches on each node # global_batch_size = args.batch_size * args.world_size # num_batches = math.ceil(num_samples / global_batch_size) # num_workers = max(1, args.workers) # num_batches = math.ceil(num_batches / num_workers) * num_workers # num_samples = num_batches * global_batch_size # dataloader = dataloader.with_epoch(num_batches) # else: # # last batches are partial, eval is done on single (master) node # num_batches = math.ceil(num_samples / args.batch_size) # add meta-data to dataloader instance for convenience dataloader.num_batches = num_batches dataloader.num_samples = num_samples return DataInfo(dataloader=dataloader, shared_epoch=shared_epoch) def get_csv_dataset(args, preprocess_fn, is_train, epoch=0): input_filename = args.train_data if is_train else args.val_data assert input_filename dataset = CsvDataset( input_filename, preprocess_fn, img_key=args.csv_img_key, caption_key=args.csv_caption_key, sep=args.csv_separator) num_samples = len(dataset) sampler = DistributedSampler(dataset) if args.distributed and is_train else None shuffle = is_train and sampler is None dataloader = DataLoader( dataset, batch_size=args.batch_size, shuffle=shuffle, num_workers=args.workers, pin_memory=True, sampler=sampler, drop_last=is_train, ) dataloader.num_samples = num_samples dataloader.num_batches = len(dataloader) return DataInfo(dataloader, sampler) def get_metaclip_dataset(args, preprocess_fn, is_train, epoch=0): # a switcher func for different versions of dataloader. from .metaclip_wds import get_metaclip_iter_wds_dataset return get_metaclip_iter_wds_dataset(args, preprocess_fn, is_train, epoch) def get_mode_dataset(args, preprocess_fn, is_train, epoch=0): # a switcher func for different versions of dataloader. from .mode_wds import get_mode_iter_wds_dataset return get_mode_iter_wds_dataset(args, preprocess_fn, is_train, epoch) def get_dataset_fn(data_path, dataset_type): if dataset_type == "webdataset": return get_wds_dataset elif dataset_type == "csv": return get_csv_dataset elif dataset_type == "cluster": return get_mode_dataset elif dataset_type == "auto": ext = data_path.split('.')[-1] if ext in ['csv', 'tsv']: return get_csv_dataset elif ext in ['tar']: if "metaclip" in data_path: return get_metaclip_dataset else: return get_wds_dataset else: raise ValueError( f"Tried to figure out dataset type, but failed for extension {ext}.") else: raise ValueError(f"Unsupported dataset type: {dataset_type}") def get_data(args, preprocess_fns, epoch=0): preprocess_train, preprocess_val = preprocess_fns data = {} if args.train_data: data["train"] = get_dataset_fn(args.train_data, args.dataset_type)( args, preprocess_train, is_train=True, epoch=epoch) return data