File size: 6,281 Bytes
37b3db0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# A script to run multinode training with submitit.
# --------------------------------------------------------

import argparse
import os
import uuid
from pathlib import Path

import sys

sys.path.append("src")

import training.main as main
import submitit


def parse_args():
    parser = argparse.ArgumentParser("Submitit for openclip")
    parser.add_argument("config_name", type=str, help="name of the config.")
    parser.add_argument("weights_pretrained", type=str, help="path of the pretrained weights.")
    parser.add_argument("logs_folder_name", type=str, help="name of the folder for saving logs.")
    parser.add_argument("--max_job_time", default="0-24:00:00", type=str, help="Number of gpus to request on each node")
    parser.add_argument("--ngpus", default=None, type=int, help="Number of gpus to request on each node")
    parser.add_argument("--nodes", default=None, type=int, help="Number of nodes to request")
    parser.add_argument("--resume", default="", type=str, help="resume a checkpoint.")
    parser.add_argument("--timeout", default=4320, type=int, help="Duration of the job")
    parser.add_argument("--job_dir", default="", type=str, help="Job dir. Leave empty for automatic.")
    parser.add_argument("--partition", default="learnlab", type=str, help="Partition where to submit")
    parser.add_argument("--use_volta32", action='store_true', help="Request 32G V100 GPUs")
    parser.add_argument('--comment', default="", type=str, help="Comment to pass to scheduler")
    args = parser.parse_args()
    return args


def get_shared_folder() -> Path:
    user = os.getenv("PWD")
    if Path(user).is_dir():
        p = Path(f"{user}/openclip")
        p.mkdir(exist_ok=True)
        return p
    raise RuntimeError("No shared folder available")


def get_init_file():
    # Init file must not exist, but it's parent dir must exist.
    os.makedirs(str(get_shared_folder()), exist_ok=True)
    init_file = get_shared_folder() / f"{uuid.uuid4().hex}_init"
    if init_file.exists():
        os.remove(str(init_file))
    return init_file


class Trainer(object):
    def __init__(self, args):
        self.args = args
        self.args.config.dist_url = get_init_file().as_uri()

    def __call__(self):
        import sys
        sys.path.append("src")
        import training.main as main
        self._setup_gpu_args()
        main.main(self.args.config)

    def checkpoint(self):
        import os
        import submitit

        self.args.config.dist_url = get_init_file().as_uri()
        checkpoint_file = os.path.join(self.args.config.output_dir, "checkpoints", "epoch_latest.pt")
        if os.path.exists(checkpoint_file):
            self.args.config.resume = checkpoint_file
        print("Requeuing ", self.args)
        empty_trainer = type(self)(self.args)
        return submitit.helpers.DelayedSubmission(empty_trainer)

    def _setup_gpu_args(self):
        import submitit
        from pathlib import Path

        job_env = submitit.JobEnvironment()
        if self.args.ngpus >= 1:
            self.args.config.local_rank = job_env.local_rank
            self.args.config.rank = job_env.global_rank
            self.args.config.world_size = job_env.num_tasks
        print(f"Process group: {job_env.num_tasks} tasks, rank: {job_env.global_rank}")


def main(args):
    if args.job_dir == "":
        args.job_dir = get_shared_folder()

    assert args.job_dir != ""
    if os.path.exists(args.job_dir) and len(args.resume) == 0 and not hasattr(args.config, "eval"):
        raise ValueError(f"{args.job_dir} existed, rm -rf {args.job_dir} ?")

    args.job_dir = Path(args.job_dir) / "%j"

    # Note that the folder will depend on the job_id, to easily track experiments
    executor = submitit.AutoExecutor(folder=args.job_dir, slurm_max_num_timeout=30)

    num_gpus_per_node = args.ngpus
    nodes = args.nodes
    timeout_min = args.timeout

    partition = args.partition
    kwargs = {}
    if args.use_volta32:
        kwargs['slurm_constraint'] = 'volta32gb'
    if args.comment:
        kwargs['slurm_comment'] = args.comment

    slurm_additional_parameters = {
        "account": "# CHANGE ME (add your slurm account id)",
        "gpus-per-node": f"A100:{num_gpus_per_node}",
        "time": args.max_job_time
    }

    executor.update_parameters(
        slurm_job_name="run_job",
        tasks_per_node=num_gpus_per_node,  # one task per GPU
        slurm_cpus_per_task=16,
        slurm_nodes=nodes,
        timeout_min=timeout_min,
        # Below are cluster dependent parameters
        slurm_partition=partition,
        slurm_additional_parameters=slurm_additional_parameters,
        **kwargs
    )

    executor.update_parameters(name=args.config.name)

    args.dist_url = get_init_file().as_uri()
    args.output_dir = args.job_dir

    trainer = Trainer(args)
    job = executor.submit(trainer)

    print("Submitted job_id:", job.job_id, "@", str(args.job_dir).replace("%j", job.job_id))


def submit():
    args = parse_args()
    from configs import search_config
    from copy import deepcopy

    config = search_config(args.config_name)
    _args = deepcopy(args)
    if len(args.resume):
        checkpoint_file = os.path.join(config.output_dir, "checkpoints", args.resume)
        args.resume = checkpoint_file
        config.resume = checkpoint_file

    if len(args.weights_pretrained):
        config.logs = args.logs_folder_name
        config.pretrained = args.weights_pretrained
    setattr(_args, "config", config)
    if args.ngpus is not None:
        _args.ngpus = args.ngpus
    elif hasattr(config, "ngpus"):
        _args.ngpus = config.ngpus
    else:
        raise ValueError("must specify ngpus in arg or config.")
    if args.nodes is not None:
        _args.nodes = args.nodes
    elif hasattr(config, "nodes"):
        _args.nodes = config.nodes
    else:
        raise ValueError("must specify ngpus in arg or config.")
    _args.job_dir = config.output_dir
    main(_args)


if __name__ == "__main__":
    submit()