|
import gradio as gr |
|
from all_models import models |
|
from _prompt import thePrompt, howManyModelsToUse |
|
from externalmod import gr_Interface_load, save_image, randomize_seed |
|
import asyncio |
|
import os |
|
from threading import RLock |
|
from datetime import datetime |
|
|
|
preSetPrompt = thePrompt |
|
negPreSetPrompt = "[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry, text, fuzziness" |
|
|
|
lock = RLock() |
|
|
|
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None |
|
|
|
def get_current_time(): |
|
now = datetime.now() |
|
current_time = now.strftime("%y-%m-%d %H:%M:%S") |
|
return current_time |
|
|
|
def load_fn(models): |
|
global models_load |
|
models_load = {} |
|
for model in models: |
|
if model not in models_load.keys(): |
|
try: |
|
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN) |
|
except Exception as error: |
|
print(error) |
|
m = gr.Interface(lambda: None, ['text'], ['image']) |
|
models_load.update({model: m}) |
|
|
|
|
|
load_fn(models) |
|
|
|
num_models = howManyModelsToUse |
|
max_images = howManyModelsToUse |
|
inference_timeout = 400 |
|
default_models = models[:num_models] |
|
MAX_SEED = 2**32-1 |
|
|
|
def extend_choices(choices): |
|
return choices[:num_models] + (num_models - len(choices[:num_models])) * ['NA'] |
|
|
|
|
|
def update_imgbox(choices): |
|
choices_plus = extend_choices(choices[:num_models]) |
|
return [gr.Image(None, label=m, visible=(m!='NA')) for m in choices_plus] |
|
|
|
|
|
def random_choices(): |
|
import random |
|
random.seed() |
|
return random.choices(models, k=num_models) |
|
|
|
|
|
async def infer(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1, timeout=inference_timeout): |
|
kwargs = {} |
|
if height > 0: kwargs["height"] = height |
|
if width > 0: kwargs["width"] = width |
|
if steps > 0: kwargs["num_inference_steps"] = steps |
|
if cfg > 0: cfg = kwargs["guidance_scale"] = cfg |
|
|
|
if seed == -1: |
|
theSeed = randomize_seed() |
|
else: |
|
theSeed = seed |
|
kwargs["seed"] = theSeed |
|
|
|
task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn, prompt=prompt, negative_prompt=nprompt, **kwargs, token=HF_TOKEN)) |
|
await asyncio.sleep(0) |
|
try: |
|
result = await asyncio.wait_for(task, timeout=timeout) |
|
except asyncio.TimeoutError as e: |
|
print(e) |
|
print(f"infer: Task timed out: {model_str}") |
|
if not task.done(): task.cancel() |
|
result = None |
|
raise Exception(f"Task timed out: {model_str}") from e |
|
except Exception as e: |
|
print(e) |
|
print(f"infer: exception: {model_str}") |
|
if not task.done(): task.cancel() |
|
result = None |
|
raise Exception() from e |
|
if task.done() and result is not None and not isinstance(result, tuple): |
|
with lock: |
|
png_path = model_str.replace("/", "_") + " - " + get_current_time() + "_" + str(theSeed) + ".png" |
|
image = save_image(result, png_path, model_str, prompt, nprompt, height, width, steps, cfg, theSeed) |
|
return image |
|
return None |
|
|
|
def gen_fn(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1): |
|
try: |
|
loop = asyncio.new_event_loop() |
|
result = loop.run_until_complete(infer(model_str, prompt, nprompt, height, width, steps, cfg, seed, inference_timeout)) |
|
except (Exception, asyncio.CancelledError) as e: |
|
print(e) |
|
print(f"gen_fn: Task aborted: {model_str}") |
|
result = None |
|
raise gr.Error(f"Task aborted: {model_str}, Error: {e}") |
|
finally: |
|
loop.close() |
|
return result |
|
|
|
|
|
def add_gallery(image, model_str, gallery): |
|
if gallery is None: gallery = [] |
|
with lock: |
|
if image is not None: gallery.insert(0, (image, model_str)) |
|
return gallery |
|
|
|
JS=""" |
|
<script> |
|
|
|
// Function to monitor image src changes and automatically download the image |
|
function monitorImageSrcChanges() { |
|
// Set of recently downloaded image URLs to avoid re-triggering the download |
|
const downloadedImages = new Set(); |
|
|
|
// Track the last time a download occurred (in milliseconds) |
|
let lastDownloadTime = Date.now(); |
|
|
|
// Create a MutationObserver instance |
|
const observer = new MutationObserver((mutationsList, observer) => { |
|
// Loop through all mutations |
|
mutationsList.forEach(mutation => { |
|
// Check if any new image tags were added |
|
if (mutation.type === 'childList') { |
|
mutation.addedNodes.forEach(node => { |
|
if (node.nodeName === 'IMG') { |
|
// New image added, monitor its src and download it |
|
observeImageSrc(node); |
|
} |
|
}); |
|
} |
|
// Check if an image src attribute has changed |
|
if (mutation.type === 'attributes' && mutation.attributeName === 'src') { |
|
console.log('Image src changed:', mutation.target.src); |
|
downloadImage(mutation.target.src); |
|
} |
|
}); |
|
}); |
|
|
|
// Options for the observer (what to monitor) |
|
const config = { childList: true, attributes: true, subtree: true, attributeFilter: ['src'] }; |
|
|
|
// Start observing the document body (or any specific element) |
|
observer.observe(document.body, config); |
|
|
|
// Initial monitoring of images already in the DOM |
|
document.querySelectorAll('img').forEach(img => { |
|
observeImageSrc(img); |
|
}); |
|
|
|
// Function to observe an image's src attribute changes |
|
function observeImageSrc(img) { |
|
const srcObserver = new MutationObserver(mutations => { |
|
mutations.forEach(mutation => { |
|
if (mutation.type === 'attributes' && mutation.attributeName === 'src') { |
|
console.log('Image src changed:', img.src); |
|
downloadImage(img.src); |
|
} |
|
}); |
|
}); |
|
|
|
// Start observing src attribute changes of the image |
|
srcObserver.observe(img, { attributes: true, attributeFilter: ['src'] }); |
|
} |
|
|
|
// Function to download an image automatically with a cooldown to prevent multiple downloads |
|
function downloadImage(src) { |
|
// Check if the image has been downloaded recently |
|
if (downloadedImages.has(src)) { |
|
return; // Prevent duplicate downloads |
|
} |
|
|
|
// Add the image src to the set of downloaded images |
|
downloadedImages.add(src); |
|
|
|
// Trigger the download |
|
const link = document.createElement('a'); |
|
link.href = src; |
|
link.download = src.split('/').pop(); // Use the file name from the URL (last part of the src) |
|
link.style.display = 'none'; // Hide the link |
|
document.body.appendChild(link); |
|
link.click(); // Trigger the download |
|
document.body.removeChild(link); // Clean up the DOM by removing the link after download |
|
|
|
// Set a cooldown to allow the download to be triggered again after a delay (e.g., 500ms) |
|
setTimeout(() => { |
|
downloadedImages.delete(src); // Remove from the set after the cooldown |
|
}, 500); // 500ms cooldown (adjust as needed) |
|
|
|
// After download is triggered, click the button with id "TheButt" |
|
setTimeout(() => { |
|
const button = document.getElementById('TheButt'); |
|
if (button) { |
|
button.click(); // Click the button |
|
} else { |
|
console.error('Button with id "TheButt" not found!'); |
|
} |
|
}, 500); // Adjust the timeout if needed to make sure the download starts before clicking |
|
// Update the last download time |
|
lastDownloadTime = Date.now(); |
|
} |
|
|
|
// Function to check for inactivity and reload the page if no download happened in 400 seconds |
|
setInterval(() => { |
|
const currentTime = Date.now(); |
|
if (currentTime - lastDownloadTime >= 400000) { // 400,000ms = 400 seconds |
|
console.log("No download detected for 400 seconds, reloading the page..."); |
|
location.reload(); // Reload the page |
|
} |
|
}, 1000); // Check every second |
|
} |
|
|
|
window.addEventListener('load', () => { |
|
monitorImageSrcChanges(); |
|
console.log("Yo"); |
|
}); |
|
|
|
</script> |
|
""" |
|
|
|
CSS=""" |
|
<style> |
|
.image-monitor { |
|
border:1px solid red; |
|
} |
|
|
|
/* |
|
.svelte-1pijsyv{ |
|
border:1px solid green; |
|
} |
|
*/ |
|
|
|
.gallery-container{ |
|
max-height: 512px; |
|
} |
|
|
|
.butt{ |
|
background-color:#2b4764 !important |
|
} |
|
.butt:hover{ |
|
background-color:#3a6c9f !important; |
|
} |
|
|
|
</style> |
|
""" |
|
|
|
with gr.Blocks(head=CSS + JS) as demo: |
|
with gr.Column(scale=2): |
|
with gr.Group(): |
|
txt_input = gr.Textbox(label='Your prompt:', value=preSetPrompt, lines=3, autofocus=1) |
|
neg_input = gr.Textbox(label='Negative prompt:', value=negPreSetPrompt, lines=1) |
|
with gr.Accordion("Advanced", open=False, visible=True): |
|
with gr.Row(): |
|
width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0) |
|
height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0) |
|
with gr.Row(): |
|
steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0) |
|
cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0) |
|
seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1) |
|
seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary") |
|
seed_rand.click(randomize_seed, None, [seed], queue=False) |
|
with gr.Row(): |
|
gen_button = gr.Button(f'Generate up to {int(num_models)} images', variant='primary', scale=3, elem_classes=["butt"], elem_id=["TheButt"]) |
|
random_button = gr.Button(f'Randomize Models', variant='secondary', scale=1) |
|
|
|
with gr.Column(scale=1): |
|
with gr.Group(): |
|
with gr.Row(): |
|
output = [gr.Image(label=m, show_download_button=True, interactive=False, width=112, height=112, show_share_button=False, format="png", visible=True) for m in default_models] |
|
current_models = [gr.Textbox(m, visible=False) for m in default_models] |
|
|
|
with gr.Column(scale=2): |
|
gallery = gr.Gallery(label="Output", visible=False, show_download_button=True,interactive=False, show_share_button=False, container=True, format="png", preview=True, object_fit="cover", columns=2, rows=2) |
|
|
|
for m, o in zip(current_models, output): |
|
gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fn,inputs=[m, txt_input, neg_input, height, width, steps, cfg, seed], outputs=[o], concurrency_limit=None, queue=False) |
|
|
|
|
|
with gr.Column(scale=4): |
|
with gr.Accordion('Model selection'): |
|
model_choice = gr.CheckboxGroup(models, label = f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=default_models, interactive=True) |
|
model_choice.change(update_imgbox, model_choice, output) |
|
model_choice.change(extend_choices, model_choice, current_models) |
|
random_button.click(random_choices, None, model_choice) |
|
|
|
demo.launch(show_api=False, max_threads=400) |
|
|