import spaces
import gradio as gr
from huggingface_hub import InferenceClient
from torch import nn
from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM
from pathlib import Path
import torch
import torch.amp.autocast_mode
from PIL import Image
import os
import torchvision.transforms.functional as TVF
from dotenv import load_dotenv
# Load environment variables from .env file
load_dotenv()
USERNAME = os.getenv("USERNAME")
PASSWORD = os.getenv("PASSWORD")
CLIP_PATH = "google/siglip-so400m-patch14-384"
MODEL_PATH = "meta-llama/Meta-Llama-3.1-8B"
CHECKPOINT_PATH = Path("9em124t2-499968")
TITLE = "
JoyCaption Alpha One (2024-09-20a)
"
CAPTION_TYPE_MAP = {
("descriptive", "formal", False, False): ["Write a descriptive caption for this image in a formal tone."],
("descriptive", "formal", False, True): ["Write a descriptive caption for this image in a formal tone within {word_count} words."],
("descriptive", "formal", True, False): ["Write a {length} descriptive caption for this image in a formal tone."],
("descriptive", "informal", False, False): ["Write a descriptive caption for this image in a casual tone."],
("descriptive", "informal", False, True): ["Write a descriptive caption for this image in a casual tone within {word_count} words."],
("descriptive", "informal", True, False): ["Write a {length} descriptive caption for this image in a casual tone."],
("training_prompt", "formal", False, False): ["Write a stable diffusion prompt for this image."],
("training_prompt", "formal", False, True): ["Write a stable diffusion prompt for this image within {word_count} words."],
("training_prompt", "formal", True, False): ["Write a {length} stable diffusion prompt for this image."],
("rng-tags", "formal", False, False): ["Write a list of Booru tags for this image."],
("rng-tags", "formal", False, True): ["Write a list of Booru tags for this image within {word_count} words."],
("rng-tags", "formal", True, False): ["Write a {length} list of Booru tags for this image."],
("style_prompt", "formal", False, False): ["Generate a detailed style prompt for this image, including lens type, film stock, composition notes, lighting aspects, and any special photographic techniques."],
("style_prompt", "formal", False, True): ["Generate a detailed style prompt for this image within {word_count} words, including lens type, film stock, composition notes, lighting aspects, and any special photographic techniques."],
("style_prompt", "formal", True, False): ["Generate a {length} detailed style prompt for this image, including lens type, film stock, composition notes, lighting aspects, and any special photographic techniques."],
}
HF_TOKEN = os.environ.get("HF_TOKEN", None)
class ImageAdapter(nn.Module):
def __init__(self, input_features: int, output_features: int, ln1: bool, pos_emb: bool, num_image_tokens: int, deep_extract: bool):
super().__init__()
self.deep_extract = deep_extract
if self.deep_extract:
input_features = input_features * 5
self.linear1 = nn.Linear(input_features, output_features)
self.activation = nn.GELU()
self.linear2 = nn.Linear(output_features, output_features)
self.ln1 = nn.Identity() if not ln1 else nn.LayerNorm(input_features)
self.pos_emb = None if not pos_emb else nn.Parameter(torch.zeros(num_image_tokens, input_features))
# Mode token
#self.mode_token = nn.Embedding(n_modes, output_features)
#self.mode_token.weight.data.normal_(mean=0.0, std=0.02) # Matches HF's implementation of llama3
# Other tokens (<|image_start|>, <|image_end|>, <|eot_id|>)
self.other_tokens = nn.Embedding(3, output_features)
self.other_tokens.weight.data.normal_(mean=0.0, std=0.02) # Matches HF's implementation of llama3
def forward(self, vision_outputs: torch.Tensor):
if self.deep_extract:
x = torch.concat((
vision_outputs[-2],
vision_outputs[3],
vision_outputs[7],
vision_outputs[13],
vision_outputs[20],
), dim=-1)
assert len(x.shape) == 3, f"Expected 3, got {len(x.shape)}" # batch, tokens, features
assert x.shape[-1] == vision_outputs[-2].shape[-1] * 5, f"Expected {vision_outputs[-2].shape[-1] * 5}, got {x.shape[-1]}"
else:
x = vision_outputs[-2]
x = self.ln1(x)
if self.pos_emb is not None:
assert x.shape[-2:] == self.pos_emb.shape, f"Expected {self.pos_emb.shape}, got {x.shape[-2:]}"
x = x + self.pos_emb
x = self.linear1(x)
x = self.activation(x)
x = self.linear2(x)
# Mode token
#mode_token = self.mode_token(mode)
#assert mode_token.shape == (x.shape[0], mode_token.shape[1], x.shape[2]), f"Expected {(x.shape[0], 1, x.shape[2])}, got {mode_token.shape}"
#x = torch.cat((x, mode_token), dim=1)
# <|image_start|>, IMAGE, <|image_end|>
other_tokens = self.other_tokens(torch.tensor([0, 1], device=self.other_tokens.weight.device).expand(x.shape[0], -1))
assert other_tokens.shape == (x.shape[0], 2, x.shape[2]), f"Expected {(x.shape[0], 2, x.shape[2])}, got {other_tokens.shape}"
x = torch.cat((other_tokens[:, 0:1], x, other_tokens[:, 1:2]), dim=1)
return x
def get_eot_embedding(self):
return self.other_tokens(torch.tensor([2], device=self.other_tokens.weight.device)).squeeze(0)
# Load CLIP
print("Loading CLIP")
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
clip_model = AutoModel.from_pretrained(CLIP_PATH)
clip_model = clip_model.vision_model
if (CHECKPOINT_PATH / "clip_model.pt").exists():
print("Loading VLM's custom vision model")
checkpoint = torch.load(CHECKPOINT_PATH / "clip_model.pt", map_location='cpu')
checkpoint = {k.replace("_orig_mod.module.", ""): v for k, v in checkpoint.items()}
clip_model.load_state_dict(checkpoint)
del checkpoint
clip_model.eval()
clip_model.requires_grad_(False)
clip_model.to("cuda")
# Tokenizer
print("Loading tokenizer")
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=False)
assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Tokenizer is of type {type(tokenizer)}"
# LLM
print("Loading LLM")
if (CHECKPOINT_PATH / "text_model").exists:
print("Loading VLM's custom text model")
text_model = AutoModelForCausalLM.from_pretrained(CHECKPOINT_PATH / "text_model", device_map=0, torch_dtype=torch.bfloat16)
else:
text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", torch_dtype=torch.bfloat16)
text_model.eval()
# Image Adapter
print("Loading image adapter")
image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size, False, False, 38, False)
image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu", weights_only=True))
image_adapter.eval()
image_adapter.to("cuda")
def preprocess_image(input_image: Image.Image) -> torch.Tensor:
"""
Preprocess the input image for the CLIP model.
"""
image = input_image.resize((384, 384), Image.LANCZOS)
pixel_values = TVF.pil_to_tensor(image).unsqueeze(0) / 255.0
pixel_values = TVF.normalize(pixel_values, [0.5], [0.5])
return pixel_values.to('cuda')
def generate_caption(text_model, tokenizer, image_features, prompt_str: str, max_new_tokens: int = 300) -> str:
"""
Generate a caption based on the image features and prompt.
"""
prompt = tokenizer.encode(prompt_str, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False)
prompt_embeds = text_model.model.embed_tokens(prompt.to('cuda'))
embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64))
eot_embed = image_adapter.get_eot_embedding().unsqueeze(0).to(dtype=text_model.dtype)
inputs_embeds = torch.cat([
embedded_bos.expand(image_features.shape[0], -1, -1),
image_features.to(dtype=embedded_bos.dtype),
prompt_embeds.expand(image_features.shape[0], -1, -1),
eot_embed.expand(image_features.shape[0], -1, -1),
], dim=1)
input_ids = torch.cat([
torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long),
torch.zeros((1, image_features.shape[1]), dtype=torch.long),
prompt,
torch.tensor([[tokenizer.convert_tokens_to_ids("<|eot_id|>")]], dtype=torch.long),
], dim=1).to('cuda')
attention_mask = torch.ones_like(input_ids)
generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=max_new_tokens, do_sample=True, suppress_tokens=None)
generate_ids = generate_ids[:, input_ids.shape[1]:]
if generate_ids[0][-1] == tokenizer.eos_token_id or generate_ids[0][-1] == tokenizer.convert_tokens_to_ids("<|eot_id|>"):
generate_ids = generate_ids[:, :-1]
return tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0].strip()
@spaces.GPU()
@torch.no_grad()
def stream_chat(input_image: Image.Image, caption_type: str, caption_tone: str, caption_length: str | int, lens_type: str = "", film_stock: str = "", composition_style: str = "", lighting_aspect: str = "", special_technique: str = "", color_effect: str = "") -> str:
"""
Generate a caption, training prompt, tags, or a style prompt for image generation based on the input image and parameters.
"""
# Check if an image has been uploaded
if input_image is None:
return "Error: Please upload an image before generating a caption."
torch.cuda.empty_cache()
try:
length = None if caption_length == "any" else caption_length
if isinstance(length, str):
length = int(length)
except ValueError:
raise ValueError(f"Invalid caption length: {caption_length}")
if caption_type in ["rng-tags", "training_prompt", "style_prompt"]:
caption_tone = "formal"
prompt_key = (caption_type, caption_tone, isinstance(length, str), isinstance(length, int))
if prompt_key not in CAPTION_TYPE_MAP:
raise ValueError(f"Invalid caption type: {prompt_key}")
if caption_type == "style_prompt":
# For style prompt, we'll create a custom prompt for the LLM
base_prompt = "Analyze the given image and create a detailed Stable Diffusion prompt for generating a new, creative image inspired by it. "
base_prompt += "The prompt should describe the main elements, style, and mood of the image, "
base_prompt += "but also introduce creative variations or enhancements. "
base_prompt += "Include specific details about the composition, lighting, and overall atmosphere. "
# Add custom settings to the prompt
if lens_type:
lens_type_key = lens_type.split(":")[0].strip()
base_prompt += f"Incorporate the effect of a {lens_type_key} lens ({lens_types_info[lens_type_key]}). "
if film_stock:
film_stock_key = film_stock.split(":")[0].strip()
base_prompt += f"Apply the characteristics of {film_stock_key} film stock ({film_stocks_info[film_stock_key]}). "
if composition_style:
composition_style_key = composition_style.split(":")[0].strip()
base_prompt += f"Use a {composition_style_key} composition style ({composition_styles_info[composition_style_key]}). "
if lighting_aspect:
lighting_aspect_key = lighting_aspect.split(":")[0].strip()
base_prompt += f"Implement {lighting_aspect_key} lighting ({lighting_aspects_info[lighting_aspect_key]}). "
if special_technique:
special_technique_key = special_technique.split(":")[0].strip()
base_prompt += f"Apply the {special_technique_key} technique ({special_techniques_info[special_technique_key]}). "
if color_effect:
color_effect_key = color_effect.split(":")[0].strip()
base_prompt += f"Use a {color_effect_key} color effect ({color_effects_info[color_effect_key]}). "
base_prompt += f"The final prompt should be approximately {length} words long. "
base_prompt += "Format the output as a single paragraph without numbering or bullet points."
prompt_str = base_prompt
else:
prompt_str = CAPTION_TYPE_MAP[prompt_key][0].format(length=length, word_count=length)
# Debugging: Print the constructed prompt string
print(f"Constructed Prompt: {prompt_str}")
pixel_values = preprocess_image(input_image)
with torch.amp.autocast_mode.autocast('cuda', enabled=True):
vision_outputs = clip_model(pixel_values=pixel_values, output_hidden_states=True)
image_features = vision_outputs.hidden_states
embedded_images = image_adapter(image_features)
embedded_images = embedded_images.to('cuda')
# Load the model from MODEL_PATH
text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", torch_dtype=torch.bfloat16)
text_model.eval()
# Debugging: Print the prompt string before passing to generate_caption
print(f"Prompt passed to generate_caption: {prompt_str}")
caption = generate_caption(text_model, tokenizer, embedded_images, prompt_str)
return caption
css = """
h1, h2, h3, h4, h5, h6, p, li, ul, ol, a {
text-align: left;
}
.centered-image {
display: block;
margin-left: auto;
margin-right: auto;
max-width: 100%;
height: auto;
}
ul, ol {
padding-left: 20px;
}
.gradio-container {
max-width: 100% !important;
padding: 0 !important;
}
.gradio-row {
margin-left: 0 !important;
margin-right: 0 !important;
}
.gradio-column {
padding-left: 0 !important;
padding-right: 0 !important;
}
/* Left-align dropdown text */
.gradio-dropdown > div {
text-align: left !important;
}
/* Left-align checkbox labels */
.gradio-checkbox label {
text-align: left !important;
}
/* Left-align radio button labels */
.gradio-radio label {
text-align: left !important;
}
"""
# Add detailed descriptions for each option
lens_types_info = {
"Standard": "A versatile lens with a field of view similar to human vision.",
"Wide-angle": "Captures a wider field of view, great for landscapes and architecture. Applies moderate to strong lens effect with image warp.",
"Telephoto": "Used for distant subjects, gives an 'award-winning' or 'National Geographic' look. Creates interesting effects when prompted.",
"Macro": "For extreme close-up photography, revealing tiny details.",
"Fish-eye": "Ultra-wide-angle lens that creates a strong bubble-like distortion. Generates panoramic photos with the entire image warping into a bubble.",
"Tilt-shift": "Allows adjusting the plane of focus, creating a 'miniature' effect. Known for the 'diorama miniature look'.",
"Zoom lens": "Variable focal length lens. Often zooms in on the subject, perfect for creating a base for inpainting. Interesting effect on landscapes with motion blur.",
"GoPro": "Wide-angle lens with clean digital look. Excludes film grain and most filter effects, resulting in natural colors and regular saturation.",
"Pinhole camera": "Creates a unique, foggy, low-detail, historic photograph look. Used since the 1850s, with peak popularity in the 1930s."
}
film_stocks_info = {
"Kodak Portra": "Professional color negative film known for its natural skin tones and low contrast.",
"Fujifilm Velvia": "Slide film known for vibrant colors and high saturation, popular among landscape photographers.",
"Ilford Delta": "Black and white film known for its fine grain and high sharpness.",
"Kodak Tri-X": "Classic high-speed black and white film, known for its distinctive grain and wide exposure latitude.",
"Fujifilm Provia": "Color reversal film known for its natural color reproduction and fine grain.",
"Cinestill": "Color photos with fine/low grain and higher than average resolution. Colors are slightly oversaturated or slightly desaturated.",
"Ektachrome": "Color photos with fine/low to moderate grain. Colors on the colder part of spectrum or regular, with normal or slightly higher saturation.",
"Ektar": "Modern Kodak film. Color photos with little to no grain. Results look like regular modern photography with artistic angles.",
"Film Washi": "Mostly black and white photos with fine/low to moderate grain. Occasionally gives colored photos with low saturation. Distinct style with high black contrast and soft camera lens effect.",
"Fomapan": "Black and white photos with fine/low to moderate grain, highly artistic exposure and angles. Adds very soft lens effect without distortion, dark photo vignette.",
"Fujicolor": "Color photos with fine/low to moderate grain. Colors are either very oversaturated or slightly desaturated, with entire color hue shifted in a very distinct manner.",
"Holga": "Color photos with high grain. Colors are either very oversaturated or slightly desaturated. Distinct contrast of black. Often applies photographic vignette.",
"Instax": "Instant color photos similar to Polaroid but clearer. Near perfect colors, regular saturation, fine/low to medium grain.",
"Lomography": "Color photos with high grain. Colors are either very oversaturated or slightly desaturated. Distinct contrast of black. Often applies photographic vignette.",
"Kodachrome": "Color photos with moderate grain. Colors on either colder part of spectrum or regular, with normal or slightly higher saturation.",
"Rollei": "Mostly black and white photos, sometimes color with fine/low grain. Can be sepia colored or have unusual hues and desaturation. Great for landscapes."
}
composition_styles_info = {
"Rule of Thirds": "Divides the frame into a 3x3 grid, placing key elements along the lines or at their intersections.",
"Golden Ratio": "Uses a spiral based on the golden ratio to create a balanced and aesthetically pleasing composition.",
"Symmetry": "Creates a mirror-like balance in the image, often used for architectural or nature photography.",
"Leading Lines": "Uses lines within the frame to draw the viewer's eye to the main subject or through the image.",
"Framing": "Uses elements within the scene to create a frame around the main subject.",
"Minimalism": "Simplifies the composition to its essential elements, often with a lot of negative space.",
"Fill the Frame": "The main subject dominates the entire frame, leaving little to no background.",
"Negative Space": "Uses empty space around the subject to create a sense of simplicity or isolation.",
"Centered Composition": "Places the main subject in the center of the frame, creating a sense of stability or importance.",
"Diagonal Lines": "Uses diagonal elements to create a sense of movement or dynamic tension in the image.",
"Triangular Composition": "Arranges elements in the frame to form a triangle, creating a sense of stability and harmony.",
"Radial Balance": "Arranges elements in a circular pattern around a central point, creating a sense of movement or completeness."
}
lighting_aspects_info = {
"Natural light": "Uses available light from the sun or sky, often creating soft, even illumination.",
"Studio lighting": "Controlled artificial lighting setup, allowing for precise manipulation of light and shadow.",
"Back light": "Light source behind the subject, creating silhouettes or rim lighting effects.",
"Split light": "Strong light source at 90-degree angle, lighting one half of the subject while leaving the other in shadow.",
"Broad light": "Light source at an angle to the subject, producing well-lit photographs with soft to moderate shadows.",
"Dim light": "Weak or distant light source, creating lower than average brightness and often dramatic images.",
"Flash photography": "Uses a brief, intense burst of light. Can be fill flash (even lighting) or harsh flash (strong contrasts).",
"Sunlight": "Direct light from the sun, often creating strong contrasts and warm tones.",
"Moonlight": "Soft, cool light from the moon, often creating a mysterious or romantic atmosphere.",
"Spotlight": "Focused beam of light illuminating a specific area, creating high contrast between light and shadow.",
"High-key lighting": "Bright, even lighting with minimal shadows, creating a light and airy feel.",
"Low-key lighting": "Predominantly dark tones with selective lighting, creating a moody or dramatic atmosphere.",
"Rembrandt lighting": "Classic portrait lighting technique creating a triangle of light on the cheek of the subject."
}
special_techniques_info = {
"Double exposure": "Superimposes two exposures to create a single image, often resulting in a dreamy or surreal effect.",
"Long exposure": "Uses a long shutter speed to capture motion over time, often creating smooth, blurred effects for moving elements.",
"Multiple exposure": "Superimposes multiple exposures, multiplying the subject or its key elements across the image.",
"HDR": "High Dynamic Range imaging, combining multiple exposures to capture a wider range of light and dark tones.",
"Bokeh effect": "Creates a soft, out-of-focus background, often with circular highlights.",
"Silhouette": "Captures the outline of a subject against a brighter background, creating a dramatic contrast.",
"Panning": "Follows a moving subject with the camera, creating a sharp subject with a blurred background.",
"Light painting": "Uses long exposure and moving light sources to 'paint' with light in the image.",
"Infrared photography": "Captures light in the infrared spectrum, often resulting in surreal, otherworldly images.",
"Ultraviolet photography": "Captures light in the ultraviolet spectrum, often revealing hidden patterns or creating a strong violet glow.",
"Kirlian photography": "High-voltage photographic technique that captures corona discharges around objects, creating a glowing effect.",
"Thermography": "Captures infrared radiation to create images based on temperature differences, resulting in false-color heat maps.",
"Astrophotography": "Specialized technique for capturing astronomical objects and celestial events, often resulting in stunning starry backgrounds.",
"Underwater photography": "Captures images beneath the surface of water, often in pools, seas, or aquariums.",
"Aerial photography": "Captures images from an elevated position, such as from drones, helicopters, or planes.",
"Macro photography": "Extreme close-up photography, revealing tiny details not visible to the naked eye."
}
color_effects_info = {
"Black and white": "Removes all color, leaving only shades of gray.",
"Sepia": "Reddish-brown monochrome effect, often associated with vintage photography.",
"Monochrome": "Uses variations of a single color.",
"Vintage color": "Muted or faded color palette reminiscent of old photographs.",
"Cross-processed": "Deliberate processing of film in the wrong chemicals, creating unusual color shifts.",
"Desaturated": "Reduces the intensity of all colors in the image.",
"Vivid colors": "Increases the saturation and intensity of colors.",
"Pastel colors": "Soft, pale colors with a light and airy feel.",
"High contrast": "Emphasizes the difference between light and dark areas in the image.",
"Low contrast": "Reduces the difference between light and dark areas, creating a softer look.",
"Color splash": "Converts most of the image to black and white while leaving one or more elements in color."
}
def get_dropdown_choices(info_dict):
return [f"{key}: {value}" for key, value in info_dict.items()]
def login(username, password):
if username == USERNAME and password == PASSWORD:
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(value="Login successful! You can now access the Caption Captain tab.", visible=True)
else:
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(value="Invalid username or password. Please try again.", visible=True)
# Gradio interface
with gr.Blocks(theme="Hev832/Applio", css=css, fill_width=True, fill_height=True) as demo:
with gr.Tab("Welcome"):
with gr.Row():
with gr.Column(scale=2):
gr.Markdown(
"""
# 🎨 Underground Digital's Caption Captain: AI-Powered Art Inspiration
## Accelerate Your Creative Workflow with Intelligent Image Analysis
This innovative tool empowers Yamamoto's artists to quickly generate descriptive captions,
training prompts, and tags from existing artwork, fueling the creative process for GenAI models.
## 🚀 How It Works:
1. **Upload Your Inspiration**: Drop in an image (e.g., a charcoal horse picture) that embodies your desired style.
2. **Choose Your Output**: Select from descriptive captions, training prompts, or tags.
3. **Customize the Results**: Adjust tone, length, and other parameters to fine-tune the output.
4. **Generate and Iterate**: Click 'Caption' to analyze your image and use the results to inspire new creations.
"""
)
with gr.Column(scale=1):
with gr.Row():
gr.Markdown(
"""
Login below using the internal
username and password to access the full app.
Once logged in, a new tab will appear named
"Caption Captain" allowing you to access the app.
"""
)
with gr.Row():
username = gr.Textbox(label="Username", placeholder="Enter your username", value="ugd")
with gr.Row():
password = gr.Textbox(label="Password", type="password", placeholder="Enter your password", value="ugd!")
with gr.Row():
login_button = gr.Button("Login", size="sm")
login_message = gr.Markdown(visible=False)
caption_captain_tab = gr.Tab("Caption Captain", visible=False)
with caption_captain_tab:
with gr.Accordion("How to Use Caption Captain", open=False):
gr.Markdown("""
# How to Use Caption Captain
Hello, artist! Let's make some fun captions for your pictures. Here's how:
1. **Pick a Picture**: Find a cool picture you want to talk about and upload it.
2. **Choose What You Want**:
- **Caption Type**:
* "Descriptive" tells you what's in the picture
* "Training Prompt" helps computers make similar pictures
* "RNG-Tags" gives you short words about the picture
* "Style Prompt" creates detailed prompts for image generation
3. **Pick a Style** (for "Descriptive" and "Style Prompt" only):
- "Formal" sounds like a teacher talking
- "Informal" sounds like a friend chatting
4. **Decide How Long**:
- "Any" lets the computer decide
- Or pick a size from "very short" to "very long"
- You can even choose a specific number of words!
5. **Advanced Options** (for "Style Prompt" only):
- Choose lens type, film stock, composition, and lighting details
6. **Make the Caption**: Click the "Make My Caption!" button and watch the magic happen!
Remember, have fun and be creative with your captions!
## Tips for Great Captions:
- Try different types to see what you like best
- Experiment with formal and informal tones for fun variations
- Adjust the length to get just the right amount of detail
- For "Style Prompt", play with the advanced options for more specific results
- If you don't like a caption, just click "Make My Caption!" again for a new one
Have a great time captioning your art!
""")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Input Image")
caption_type = gr.Dropdown(
choices=["descriptive", "training_prompt", "rng-tags", "style_prompt"],
label="Caption Type",
value="descriptive",
)
caption_tone = gr.Dropdown(
choices=["formal", "informal"],
label="Caption Tone",
value="formal",
)
caption_length = gr.Dropdown(
choices=["any", "very short", "short", "medium-length", "long", "very long"] +
[str(i) for i in range(20, 261, 10)],
label="Caption Length",
value="any",
)
gr.Markdown("**Note:** Caption tone doesn't affect `rng-tags`, `training_prompt`, and `style_prompt`.")
with gr.Column():
error_message = gr.Markdown(visible=False) # Add this line
output_caption = gr.Textbox(label="Generated Caption")
run_button = gr.Button("Make My Caption!")
# Container for advanced options
with gr.Column(visible=False) as advanced_options:
gr.Markdown("### Advanced Options for Style Prompt")
lens_type = gr.Dropdown(
choices=get_dropdown_choices(lens_types_info),
label="Lens Type",
info="Select a lens type to define the perspective and field of view of the image."
)
film_stock = gr.Dropdown(
choices=get_dropdown_choices(film_stocks_info),
label="Film Stock",
info="Choose a film stock to determine the color, grain, and overall look of the image."
)
composition_style = gr.Dropdown(
choices=get_dropdown_choices(composition_styles_info),
label="Composition Style",
info="Select a composition style to guide the arrangement of elements in the image."
)
lighting_aspect = gr.Dropdown(
choices=get_dropdown_choices(lighting_aspects_info),
label="Lighting Aspect",
info="Choose a lighting style to define the mood and atmosphere of the image."
)
special_technique = gr.Dropdown(
choices=get_dropdown_choices(special_techniques_info),
label="Special Technique",
info="Select a special photographic technique to add unique effects to the image."
)
color_effect = gr.Dropdown(
choices=get_dropdown_choices(color_effects_info),
label="Color Effect",
info="Choose a color effect to alter the overall color palette of the image."
)
def update_style_options(caption_type):
return gr.update(visible=caption_type == "style_prompt")
caption_type.change(update_style_options, inputs=[caption_type], outputs=[advanced_options])
def process_and_handle_errors(input_image, caption_type, caption_tone, caption_length, lens_type, film_stock, composition_style, lighting_aspect, special_technique, color_effect):
try:
result = stream_chat(input_image, caption_type, caption_tone, caption_length, lens_type, film_stock, composition_style, lighting_aspect, special_technique, color_effect)
return gr.update(visible=False), result
except Exception as e:
return gr.update(visible=True, value=f"Error: {str(e)}"), ""
run_button.click(
fn=process_and_handle_errors,
inputs=[input_image, caption_type, caption_tone, caption_length, lens_type, film_stock, composition_style, lighting_aspect, special_technique, color_effect],
outputs=[error_message, output_caption]
)
login_button.click(
login,
inputs=[username, password],
outputs=[caption_captain_tab, username, password, login_message]
)
if __name__ == "__main__":
demo.launch()