import whisper import moviepy.editor as mp import gradio as gr import torch import subprocess # 1. Load Whisper Model and Move to GPU if Available device = "cuda" if torch.cuda.is_available() else "cpu" model_name = "tiny" # Use 'tiny' model for faster processing, change to 'base' or larger for more accuracy whisper_model = whisper.load_model(model_name).to(device) # Helper function to convert Whisper's transcription to SRT format def generate_srt(transcription_result): """Convert transcription with timestamps to SRT format.""" srt_content = "" for i, segment in enumerate(transcription_result['segments']): start = segment['start'] end = segment['end'] start_time = f"{int(start//3600):02}:{int((start%3600)//60):02}:{int(start%60):02},{int((start%1)*1000):03}" end_time = f"{int(end//3600):02}:{int((end%3600)//60):02}:{int(end%60):02},{int((end%1)*1000):03}" srt_content += f"{i+1}\n{start_time} --> {end_time}\n{segment['text'].strip()}\n\n" return srt_content # 2. Function to Extract Audio using optimized FFmpeg subprocess def extract_audio_ffmpeg(video_file, audio_output): """Extract audio using ffmpeg with optimized settings.""" subprocess.run([ 'ffmpeg', '-i', video_file, '-vn', '-acodec', 'pcm_s16le', '-ar', '16000', audio_output, '-y' ]) # 3. Function to Transcribe, Translate (if necessary), and Generate Subtitles def transcribe_and_generate_subtitles(video): # Step 1: Extract audio from video using optimized FFmpeg audio_path = "temp_audio.wav" extract_audio_ffmpeg(video, audio_path) # Step 2: Transcribe the audio transcription_result = whisper_model.transcribe(audio_path, language="en", verbose=False) # Step 3: Detect language and translate if necessary detected_language = transcription_result['language'] if detected_language == "hau": # Assuming "hau" is the code for Hausa # Re-transcribe with translation to English transcription_result = whisper_model.transcribe(audio_path, task="translate", verbose=False) # Step 4: Generate SRT subtitles srt_content = generate_srt(transcription_result) # Save SRT file srt_file = "output_subtitles.srt" with open(srt_file, "w", encoding="utf-8") as f: f.write(srt_content) # Step 5: Add subtitles to the video output_video = "video_with_subtitles.mp4" subprocess.run([ 'ffmpeg', '-i', video, '-vf', f"subtitles={srt_file}", output_video, '-y' ]) return transcription_result["text"], output_video # 4. Set up Gradio Interface with Optimized Settings interface = gr.Interface( fn=transcribe_and_generate_subtitles, inputs=gr.Video(label="Upload Video File"), outputs=[ gr.Textbox(label="Transcription or Translation"), gr.File(label="Download Video with Subtitles") ], title="Video Subtitle Generator", description="Upload a video in either English or Hausa. The system will detect the language, transcribe or translate if necessary, and generate a video with subtitles embedded.", live=False # Disable live updates for faster processing ) # Launch the interface interface.launch()