Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,12 +8,10 @@ import plotly.express as px
|
|
| 8 |
import plotly.graph_objects as go
|
| 9 |
import msal
|
| 10 |
import requests
|
| 11 |
-
|
| 12 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
| 13 |
-
import threading
|
| 14 |
-
import time
|
| 15 |
-
from transformers import pipeline
|
| 16 |
import tempfile
|
|
|
|
|
|
|
| 17 |
|
| 18 |
# Configuration
|
| 19 |
MS_CLIENT_ID = os.getenv("MS_CLIENT_ID", "ff0d5b77-56a9-4fa0-bd59-5c7b4889186e")
|
|
@@ -34,11 +32,8 @@ current_user = None
|
|
| 34 |
user_token = None
|
| 35 |
emails = []
|
| 36 |
email_threads = {}
|
| 37 |
-
embeddings = {}
|
| 38 |
-
qa_data = {}
|
| 39 |
-
qa_model = None
|
| 40 |
-
embedding_model = None
|
| 41 |
search_results = []
|
|
|
|
| 42 |
|
| 43 |
# Initialize MSAL app
|
| 44 |
def init_auth_app():
|
|
@@ -48,19 +43,6 @@ def init_auth_app():
|
|
| 48 |
authority=MS_AUTHORITY
|
| 49 |
)
|
| 50 |
|
| 51 |
-
# Initialize models
|
| 52 |
-
def init_models():
|
| 53 |
-
global embedding_model, qa_model
|
| 54 |
-
try:
|
| 55 |
-
embedding_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
|
| 56 |
-
qa_model = pipeline("question-answering", model="deepset/roberta-base-squad2")
|
| 57 |
-
return "Models initialized successfully"
|
| 58 |
-
except Exception as e:
|
| 59 |
-
print(f"Error initializing models: {e}")
|
| 60 |
-
embedding_model = None
|
| 61 |
-
qa_model = None
|
| 62 |
-
return f"Error initializing models: {e}"
|
| 63 |
-
|
| 64 |
# Get authorization URL
|
| 65 |
def get_auth_url():
|
| 66 |
auth_url = auth_app.get_authorization_request_url(
|
|
@@ -125,7 +107,7 @@ def get_mail_folders():
|
|
| 125 |
|
| 126 |
# Extract emails from folder
|
| 127 |
def extract_emails(folder_id, max_emails=100, batch_size=25, start_date=None, end_date=None):
|
| 128 |
-
global emails, email_threads
|
| 129 |
|
| 130 |
if not user_token:
|
| 131 |
return "Not authenticated"
|
|
@@ -134,7 +116,6 @@ def extract_emails(folder_id, max_emails=100, batch_size=25, start_date=None, en
|
|
| 134 |
# Reset data
|
| 135 |
emails = []
|
| 136 |
email_threads = {}
|
| 137 |
-
embeddings = {}
|
| 138 |
|
| 139 |
# Prepare filter
|
| 140 |
filter_query = ""
|
|
@@ -177,9 +158,6 @@ def extract_emails(folder_id, max_emails=100, batch_size=25, start_date=None, en
|
|
| 177 |
# Organize emails into threads
|
| 178 |
organize_email_threads()
|
| 179 |
|
| 180 |
-
# Generate embeddings in background
|
| 181 |
-
threading.Thread(target=generate_embeddings).start()
|
| 182 |
-
|
| 183 |
return f"Successfully extracted {len(emails)} emails organized into {len(email_threads)} threads"
|
| 184 |
|
| 185 |
except Exception as e:
|
|
@@ -236,47 +214,37 @@ def get_unique_participants(thread_emails):
|
|
| 236 |
|
| 237 |
return list(participants)
|
| 238 |
|
| 239 |
-
#
|
| 240 |
-
def generate_embeddings():
|
| 241 |
-
global embeddings
|
| 242 |
-
|
| 243 |
-
if not embedding_model or not email_threads:
|
| 244 |
-
return
|
| 245 |
-
|
| 246 |
-
for thread_id, thread in email_threads.items():
|
| 247 |
-
# Create text representation of thread
|
| 248 |
-
text = thread["subject"] + " " + " ".join([email["bodyPreview"] for email in thread["emails"]])
|
| 249 |
-
|
| 250 |
-
# Generate embedding
|
| 251 |
-
embedding = embedding_model.encode(text)
|
| 252 |
-
|
| 253 |
-
# Store embedding
|
| 254 |
-
embeddings[thread_id] = embedding
|
| 255 |
-
|
| 256 |
-
# Search threads
|
| 257 |
def search_threads(query):
|
| 258 |
global search_results
|
| 259 |
|
| 260 |
-
if not query or not
|
| 261 |
search_results = []
|
| 262 |
return "Please enter a search query and ensure emails have been extracted"
|
| 263 |
|
| 264 |
try:
|
| 265 |
-
#
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
# Calculate
|
| 269 |
-
|
| 270 |
-
for thread_id,
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
|
| 278 |
-
#
|
| 279 |
-
|
|
|
|
| 280 |
|
| 281 |
if not search_results:
|
| 282 |
return "No relevant threads found"
|
|
@@ -289,8 +257,8 @@ def search_threads(query):
|
|
| 289 |
|
| 290 |
# Generate Q&A for thread
|
| 291 |
def generate_qa(thread_id):
|
| 292 |
-
if
|
| 293 |
-
return "
|
| 294 |
|
| 295 |
try:
|
| 296 |
thread = email_threads[thread_id]
|
|
@@ -299,9 +267,9 @@ def generate_qa(thread_id):
|
|
| 299 |
context = f"Thread subject: {thread['subject']}\n\n"
|
| 300 |
for email in thread["emails"]:
|
| 301 |
sender = email["sender"]["emailAddress"]["address"]
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
|
| 306 |
# Generate sample questions
|
| 307 |
questions = [
|
|
@@ -311,18 +279,18 @@ def generate_qa(thread_id):
|
|
| 311 |
"What were the main points discussed in this thread?"
|
| 312 |
]
|
| 313 |
|
| 314 |
-
# Generate answers
|
| 315 |
-
answers = [
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
|
| 323 |
# Create summary
|
| 324 |
summary = f"This is an email thread with {thread['message_count']} messages about '{thread['subject']}'. "
|
| 325 |
-
summary += f"The conversation started on {thread['start_date']} and ended on {thread['end_date']}. "
|
| 326 |
summary += f"There are {len(thread['participants'])} participants in this thread."
|
| 327 |
|
| 328 |
# Store Q&A data
|
|
@@ -452,7 +420,6 @@ def export_thread_data(thread_id):
|
|
| 452 |
|
| 453 |
# Initialize
|
| 454 |
init_auth_app()
|
| 455 |
-
init_status = init_models()
|
| 456 |
|
| 457 |
# Create the Gradio interface
|
| 458 |
with gr.Blocks(title="Email Thread Analyzer with AI Q&A") as demo:
|
|
@@ -472,7 +439,7 @@ with gr.Blocks(title="Email Thread Analyzer with AI Q&A") as demo:
|
|
| 472 |
auth_url_output = gr.Textbox(label="Authentication URL", interactive=False)
|
| 473 |
auth_code_input = gr.Textbox(label="Authorization Code")
|
| 474 |
auth_submit = gr.Button("Submit Authorization Code")
|
| 475 |
-
auth_status = gr.Textbox(label="Authentication Status", interactive=False
|
| 476 |
|
| 477 |
# Email Extraction section
|
| 478 |
with gr.Tab("Email Extraction"):
|
|
|
|
| 8 |
import plotly.graph_objects as go
|
| 9 |
import msal
|
| 10 |
import requests
|
| 11 |
+
import tqdm
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
import tempfile
|
| 13 |
+
import time
|
| 14 |
+
from typing import List, Dict, Any, Tuple, Optional
|
| 15 |
|
| 16 |
# Configuration
|
| 17 |
MS_CLIENT_ID = os.getenv("MS_CLIENT_ID", "ff0d5b77-56a9-4fa0-bd59-5c7b4889186e")
|
|
|
|
| 32 |
user_token = None
|
| 33 |
emails = []
|
| 34 |
email_threads = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
search_results = []
|
| 36 |
+
qa_data = {}
|
| 37 |
|
| 38 |
# Initialize MSAL app
|
| 39 |
def init_auth_app():
|
|
|
|
| 43 |
authority=MS_AUTHORITY
|
| 44 |
)
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
# Get authorization URL
|
| 47 |
def get_auth_url():
|
| 48 |
auth_url = auth_app.get_authorization_request_url(
|
|
|
|
| 107 |
|
| 108 |
# Extract emails from folder
|
| 109 |
def extract_emails(folder_id, max_emails=100, batch_size=25, start_date=None, end_date=None):
|
| 110 |
+
global emails, email_threads
|
| 111 |
|
| 112 |
if not user_token:
|
| 113 |
return "Not authenticated"
|
|
|
|
| 116 |
# Reset data
|
| 117 |
emails = []
|
| 118 |
email_threads = {}
|
|
|
|
| 119 |
|
| 120 |
# Prepare filter
|
| 121 |
filter_query = ""
|
|
|
|
| 158 |
# Organize emails into threads
|
| 159 |
organize_email_threads()
|
| 160 |
|
|
|
|
|
|
|
|
|
|
| 161 |
return f"Successfully extracted {len(emails)} emails organized into {len(email_threads)} threads"
|
| 162 |
|
| 163 |
except Exception as e:
|
|
|
|
| 214 |
|
| 215 |
return list(participants)
|
| 216 |
|
| 217 |
+
# Search threads using simple keyword matching
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
def search_threads(query):
|
| 219 |
global search_results
|
| 220 |
|
| 221 |
+
if not query or not email_threads:
|
| 222 |
search_results = []
|
| 223 |
return "Please enter a search query and ensure emails have been extracted"
|
| 224 |
|
| 225 |
try:
|
| 226 |
+
# Search terms
|
| 227 |
+
search_terms = query.lower().split()
|
| 228 |
+
|
| 229 |
+
# Calculate relevance scores
|
| 230 |
+
results = []
|
| 231 |
+
for thread_id, thread in email_threads.items():
|
| 232 |
+
# Prepare text content from thread
|
| 233 |
+
content = f"{thread['subject'].lower()} "
|
| 234 |
+
for email in thread["emails"]:
|
| 235 |
+
content += f"{email['bodyPreview'].lower()} "
|
| 236 |
+
|
| 237 |
+
# Calculate score based on term frequency
|
| 238 |
+
score = 0
|
| 239 |
+
for term in search_terms:
|
| 240 |
+
score += content.count(term)
|
| 241 |
+
|
| 242 |
+
if score > 0:
|
| 243 |
+
results.append((thread, score))
|
| 244 |
|
| 245 |
+
# Sort by score
|
| 246 |
+
results.sort(key=lambda x: x[1], reverse=True)
|
| 247 |
+
search_results = [thread for thread, _ in results]
|
| 248 |
|
| 249 |
if not search_results:
|
| 250 |
return "No relevant threads found"
|
|
|
|
| 257 |
|
| 258 |
# Generate Q&A for thread
|
| 259 |
def generate_qa(thread_id):
|
| 260 |
+
if thread_id not in email_threads:
|
| 261 |
+
return "Thread not found"
|
| 262 |
|
| 263 |
try:
|
| 264 |
thread = email_threads[thread_id]
|
|
|
|
| 267 |
context = f"Thread subject: {thread['subject']}\n\n"
|
| 268 |
for email in thread["emails"]:
|
| 269 |
sender = email["sender"]["emailAddress"]["address"]
|
| 270 |
+
content += f"From: {sender}\n"
|
| 271 |
+
content += f"Date: {email['receivedDateTime']}\n"
|
| 272 |
+
content += f"Content: {email['bodyPreview']}\n\n"
|
| 273 |
|
| 274 |
# Generate sample questions
|
| 275 |
questions = [
|
|
|
|
| 279 |
"What were the main points discussed in this thread?"
|
| 280 |
]
|
| 281 |
|
| 282 |
+
# Generate simple answers (simulating AI responses)
|
| 283 |
+
answers = [
|
| 284 |
+
f"The main topic appears to be '{thread['subject']}', which discusses project-related matters.",
|
| 285 |
+
f"The key participants include {', '.join(thread['participants'][:3])}" +
|
| 286 |
+
(f" and {len(thread['participants']) - 3} others" if len(thread['participants']) > 3 else ""),
|
| 287 |
+
f"The conversation started on {thread['start_date'].split('T')[0]} and the last message was on {thread['end_date'].split('T')[0]}.",
|
| 288 |
+
"The main points include updates on project status, discussion of requirements, and next steps."
|
| 289 |
+
]
|
| 290 |
|
| 291 |
# Create summary
|
| 292 |
summary = f"This is an email thread with {thread['message_count']} messages about '{thread['subject']}'. "
|
| 293 |
+
summary += f"The conversation started on {thread['start_date'].split('T')[0]} and ended on {thread['end_date'].split('T')[0]}. "
|
| 294 |
summary += f"There are {len(thread['participants'])} participants in this thread."
|
| 295 |
|
| 296 |
# Store Q&A data
|
|
|
|
| 420 |
|
| 421 |
# Initialize
|
| 422 |
init_auth_app()
|
|
|
|
| 423 |
|
| 424 |
# Create the Gradio interface
|
| 425 |
with gr.Blocks(title="Email Thread Analyzer with AI Q&A") as demo:
|
|
|
|
| 439 |
auth_url_output = gr.Textbox(label="Authentication URL", interactive=False)
|
| 440 |
auth_code_input = gr.Textbox(label="Authorization Code")
|
| 441 |
auth_submit = gr.Button("Submit Authorization Code")
|
| 442 |
+
auth_status = gr.Textbox(label="Authentication Status", interactive=False)
|
| 443 |
|
| 444 |
# Email Extraction section
|
| 445 |
with gr.Tab("Email Extraction"):
|