File size: 3,435 Bytes
e4c0081
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f7b312
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
#!/bin/bash
# Setup script for Claude in VS Code on Hugging Face Space

echo "Setting up Python environment for working with Claude..."

# Create a virtual environment
python -m venv ~/claude-env

# Activate the virtual environment
source ~/claude-env/bin/activate

# Install required packages
pip install -U huggingface_hub gradio transformers datasets sentence-transformers faiss-cpu torch langchain

# Create initial files
mkdir -p ~/hf_implementation
cd ~/hf_implementation

# Create a simple Gradio app
cat > app.py << 'EOL'
import gradio as gr
import os

def process_file(file):
    """Process an uploaded file."""
    filename = os.path.basename(file.name)
    return f"File {filename} would be processed using HF models."

def query_index(query):
    """Query the RAG index."""
    return f"Query: {query}\nResponse: This is a placeholder. The real implementation will use sentence-transformers and FAISS."

# Create the Gradio interface
with gr.Blocks(title="RAG Document Processor") as demo:
    gr.Markdown("# RAG Document Processing System")
    
    with gr.Tab("Upload & Process"):
        file_input = gr.File(label="Upload Document")
        process_button = gr.Button("Process Document")
        output = gr.Textbox(label="Processing Result")
        process_button.click(process_file, inputs=file_input, outputs=output)
    
    with gr.Tab("Query Documents"):
        query_input = gr.Textbox(label="Enter your query")
        query_button = gr.Button("Search")
        response = gr.Textbox(label="Response")
        query_button.click(query_index, inputs=query_input, outputs=response)

# Launch the app
if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)
EOL

# Create a sample implementation file
cat > hf_embeddings.py << 'EOL'
"""
Embeddings module using sentence-transformers.
"""
from sentence_transformers import SentenceTransformer
import numpy as np

class HFEmbeddings:
    def __init__(self, model_name="sentence-transformers/all-MiniLM-L6-v2"):
        """Initialize the embedding model.
        
        Args:
            model_name: Name of the sentence-transformers model to use
        """
        self.model = SentenceTransformer(model_name)
        
    def embed_texts(self, texts):
        """Generate embeddings for a list of texts.
        
        Args:
            texts: List of strings to embed
            
        Returns:
            List of embedding vectors
        """
        return self.model.encode(texts)
    
    def embed_query(self, query):
        """Generate embedding for a query string.
        
        Args:
            query: Query string
            
        Returns:
            Embedding vector
        """
        return self.model.encode(query)
EOL

# Create a README for the implementation
cat > README.md << 'EOL'
# Hugging Face RAG Implementation

This directory contains the Hugging Face native implementation of the RAG system.

## Files
- `app.py` - Gradio interface for the RAG system
- `hf_embeddings.py` - Embedding generation with sentence-transformers

## Running the Application
```bash
python app.py
```

## Implementation Plan
See `CLAUDE_HF.md` in the main directory for the complete implementation plan.
EOL

echo "Setup complete!"
echo "To use the environment:"
echo "1. Run 'source ~/claude-env/bin/activate'"
echo "2. Navigate to '~/hf_implementation'"
echo "3. Run 'python app.py' to start the Gradio interface"