Spaces:
Sleeping
Sleeping
jschwaller
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -31,6 +31,16 @@ ner_model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-n
|
|
31 |
ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, aggregation_strategy="simple") # pass device=0 if using gpu
|
32 |
#
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
def adr_predict(x):
|
35 |
encoded_input = tokenizer(x, return_tensors='pt')
|
36 |
output = model(**encoded_input)
|
@@ -41,15 +51,6 @@ def adr_predict(x):
|
|
41 |
local_plot = shap.plots.text(shap_values[0], display=False)
|
42 |
|
43 |
res = ner_pipe(x)
|
44 |
-
entity_colors = {
|
45 |
-
'Severity': '#E63946', # a vivid red
|
46 |
-
'Sign_symptom': '#2A9D8F', # a deep teal
|
47 |
-
'Medication': '#457B9D', # a dusky blue
|
48 |
-
'Age': '#F4A261', # a sandy orange
|
49 |
-
'Sex': '#F4A261', # same sandy orange for consistency with 'Age'
|
50 |
-
'Diagnostic_procedure': '#9C6644', # a brown
|
51 |
-
'Biological_structure': '#BDB2FF', # a light pastel purple
|
52 |
-
}
|
53 |
|
54 |
htext = ""
|
55 |
prev_end = 0
|
@@ -65,6 +66,7 @@ def adr_predict(x):
|
|
65 |
|
66 |
return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}, local_plot, htext
|
67 |
|
|
|
68 |
def main(prob1):
|
69 |
text = str(prob1).lower()
|
70 |
obj = adr_predict(text)
|
|
|
31 |
ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, aggregation_strategy="simple") # pass device=0 if using gpu
|
32 |
#
|
33 |
|
34 |
+
entity_colors = {
|
35 |
+
'Severity': '#E63946', # a vivid red
|
36 |
+
'Sign_symptom': '#2A9D8F', # a deep teal
|
37 |
+
'Medication': '#457B9D', # a dusky blue
|
38 |
+
'Age': '#F4A261', # a sandy orange
|
39 |
+
'Sex': '#F4A261', # same sandy orange for consistency with 'Age'
|
40 |
+
'Diagnostic_procedure': '#9C6644', # a brown
|
41 |
+
'Biological_structure': '#BDB2FF', # a light pastel purple
|
42 |
+
}
|
43 |
+
|
44 |
def adr_predict(x):
|
45 |
encoded_input = tokenizer(x, return_tensors='pt')
|
46 |
output = model(**encoded_input)
|
|
|
51 |
local_plot = shap.plots.text(shap_values[0], display=False)
|
52 |
|
53 |
res = ner_pipe(x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
htext = ""
|
56 |
prev_end = 0
|
|
|
66 |
|
67 |
return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}, local_plot, htext
|
68 |
|
69 |
+
|
70 |
def main(prob1):
|
71 |
text = str(prob1).lower()
|
72 |
obj = adr_predict(text)
|