# with cluster profiles
import gradio as gr
import pickle
import pandas as pd
import shap
import matplotlib.pyplot as plt
# Load model
filename = 'xgb_h_new.pkl'
with open(filename, 'rb') as f:
loaded_model = pickle.load(f)
# Setup SHAP
explainer = shap.Explainer(loaded_model)
# Employee Profiles (From SPSS 3-Cluster Solution)
employee_profiles = {
"π Leslie Knope": [4.716, 4.792, 4.864, 4.588, 4.849, 4.601], # Cluster group 1 averages - high engagement, strong support, high workload
"β οΈ Kevin Malone": [3.045, 3.122, 3.129, 2.886, 3.113, 2.197], # Cluster group 2 averages - disengaged, low recognition, weak support
"π± Jim Halpert": [3.885, 3.992, 4.119, 3.704, 4.090, 3.377] # Cluster group 3 averages - Moderately engaged, could be more recognized - room to grow
}
# Define the prediction function
def main_func(WellBeing, SupportiveGM, Engagement, Workload, WorkEnvironment, Merit):
new_row = pd.DataFrame({
'WellBeing': [WellBeing],
'SupportiveGM': [SupportiveGM],
'Engagement': [Engagement],
'Workload': [Workload],
'WorkEnvironment': [WorkEnvironment],
'Merit': [Merit]
})
# Predict probability
prob = loaded_model.predict_proba(new_row)
shap_values = explainer(new_row)
# Calculate probability values
stay_prob = round((1 - float(prob[0][0])) * 100, 2)
leave_prob = round(float(prob[0][0]) * 100, 2)
# Dynamic risk label: Changes color & text based on probability
risk_label = "π΄ High Risk of Turnover" if leave_prob > 50 else "π’ Low Risk of Turnover"
risk_color = "red" if leave_prob > 50 else "green"
risk_html = f"""
{risk_label}
- π§² Likelihood of Staying: {stay_prob}%
- πͺ Likelihood of Leaving: {leave_prob}%
"""
# Key Insights (Updated for 0.1-point increments)
insights_html = ""
for feature, shap_val in dict(zip(new_row.columns, shap_values.values[0])).items():
impact = round(shap_val * 10, 2) # Scaling impact for 0.1 changes
icon = "π" if shap_val > 0 else "π"
effect = "raises turnover risk" if shap_val > 0 else "improves retention"
insights_html += f"
{icon} Each 0.1-point increase in {feature} {effect} by {abs(impact)}%.
"
insights_html += "
"
# Final Layout (Risk + Key Insights)
final_layout = f"""
{risk_html}
|
Key Insights:
{insights_html}
|
"""
# Retention vs. Turnover Chart
fig, ax = plt.subplots()
categories = ["Stay", "Leave"]
values = [stay_prob, leave_prob]
colors = ["#0057B8", "#D43F00"]
ax.barh(categories, values, color=colors)
for i, v in enumerate(values):
ax.text(v + 2, i, f"{v:.2f}%", va='center', fontweight='bold', fontsize=12)
ax.set_xlabel("Probability (%)")
ax.set_title("Retention vs. Turnover Probability")
plt.tight_layout()
prob_chart_path = "prob_chart.png"
plt.savefig(prob_chart_path, transparent=True)
plt.close()
# SHAP Chart
fig, ax = plt.subplots()
shap.plots.bar(shap_values[0], max_display=6, show=False)
ax.set_title("Key Drivers of Turnover Risk")
plt.tight_layout()
shap_plot_path = "shap_plot.png"
plt.savefig(shap_plot_path, transparent=True)
plt.close()
return final_layout, prob_chart_path, shap_plot_path
# UI Setup
with gr.Blocks() as demo:
gr.HTML("""
""")
gr.Markdown("Hilton Team Member Retention Predictor
")
gr.Markdown("""
β¨ Welcome to Hiltonβs Employee Retention Predictor
This tool helps HR leaders & managers assess team member engagement
and predict turnover risk using AI-powered insights.
π See what factors drive retention & make data-driven decisions.
""")
# Dropdown for Employee Profiles
profile_dropdown = gr.Dropdown(choices=list(employee_profiles.keys()), label="Select Employee Profile")
# Sliders for input features
with gr.Row():
WellBeing = gr.Slider(label="WellBeing Score", minimum=1, maximum=5, value=4, step=0.1)
SupportiveGM = gr.Slider(label="Supportive GM Score", minimum=1, maximum=5, value=4, step=0.1)
Engagement = gr.Slider(label="Engagement Score", minimum=1, maximum=5, value=4, step=0.1)
with gr.Row():
Workload = gr.Slider(label="Workload Score", minimum=1, maximum=5, value=4, step=0.1)
WorkEnvironment = gr.Slider(label="Work Environment Score", minimum=1, maximum=5, value=4, step=0.1)
Merit = gr.Slider(label="Merit Score", minimum=1, maximum=5, value=4, step=0.1)
submit_btn = gr.Button("π Click Here to Analyze Retention")
# Output elements
prediction = gr.HTML()
with gr.Row():
prob_chart = gr.Image(label="Retention vs. Turnover Probability", type="filepath")
shap_plot = gr.Image(label="Key Drivers of Turnover Risk", type="filepath")
# Allow profile selection to update sliders
def update_sliders(profile):
if profile in employee_profiles:
return employee_profiles[profile]
return [4, 4, 4, 4, 4, 4]
profile_dropdown.change(update_sliders, inputs=[profile_dropdown], outputs=[WellBeing, SupportiveGM, Engagement, Workload, WorkEnvironment, Merit])
submit_btn.click(main_func, [WellBeing, SupportiveGM, Engagement, Workload, WorkEnvironment, Merit], [prediction, prob_chart, shap_plot])
demo.launch()