Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,290 +1,154 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
"import gradio as gr"
|
22 |
-
]
|
23 |
-
},
|
24 |
-
{
|
25 |
-
"cell_type": "code",
|
26 |
-
"execution_count": 3,
|
27 |
-
"id": "9742e1cb-7e40-4af9-8c59-6a341c9d9b38",
|
28 |
-
"metadata": {},
|
29 |
-
"outputs": [],
|
30 |
-
"source": [
|
31 |
-
"import pickle\n",
|
32 |
-
"import pandas as pd\n",
|
33 |
-
"import shap\n",
|
34 |
-
"from shap.plots._force_matplotlib import draw_additive_plot\n",
|
35 |
-
"import numpy as np\n",
|
36 |
-
"import matplotlib.pyplot as plt\n",
|
37 |
-
"from sklearn.preprocessing import LabelEncoder, MinMaxScaler, StandardScaler # Importing function for scaling the data"
|
38 |
-
]
|
39 |
-
},
|
40 |
-
{
|
41 |
-
"cell_type": "markdown",
|
42 |
-
"id": "7ab0387d-3a31-4164-a46e-b1bb57dbf33a",
|
43 |
-
"metadata": {},
|
44 |
-
"source": [
|
45 |
-
"# App Code"
|
46 |
-
]
|
47 |
-
},
|
48 |
-
{
|
49 |
-
"cell_type": "code",
|
50 |
-
"execution_count": 4,
|
51 |
-
"id": "b168e539-83f7-4bb6-a112-fe8de8fdab52",
|
52 |
-
"metadata": {},
|
53 |
-
"outputs": [
|
54 |
-
{
|
55 |
-
"data": {
|
56 |
-
"text/plain": [
|
57 |
-
"('WellBeing',\n",
|
58 |
-
" 'SupportiveGM',\n",
|
59 |
-
" 'Engagement',\n",
|
60 |
-
" 'Workload',\n",
|
61 |
-
" 'WorkEnvironment',\n",
|
62 |
-
" 'Merit')"
|
63 |
-
]
|
64 |
-
},
|
65 |
-
"execution_count": 4,
|
66 |
-
"metadata": {},
|
67 |
-
"output_type": "execute_result"
|
68 |
-
}
|
69 |
-
],
|
70 |
-
"source": [
|
71 |
-
"'WellBeing', 'SupportiveGM', 'Engagement', 'Workload', 'WorkEnvironment', 'Merit'"
|
72 |
-
]
|
73 |
-
},
|
74 |
-
{
|
75 |
-
"cell_type": "code",
|
76 |
-
"execution_count": 5,
|
77 |
-
"id": "fc97600d-3c32-4d66-a60e-b416c170293b",
|
78 |
-
"metadata": {},
|
79 |
-
"outputs": [
|
80 |
-
{
|
81 |
-
"name": "stdout",
|
82 |
-
"output_type": "stream",
|
83 |
-
"text": [
|
84 |
-
"* Running on local URL: http://127.0.0.1:7860\n",
|
85 |
-
"* Running on public URL: https://35c8546aedfc1b28e8.gradio.live\n",
|
86 |
-
"\n",
|
87 |
-
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n"
|
88 |
-
]
|
89 |
-
},
|
90 |
-
{
|
91 |
-
"data": {
|
92 |
-
"text/html": [
|
93 |
-
"<div><iframe src=\"https://35c8546aedfc1b28e8.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
94 |
-
],
|
95 |
-
"text/plain": [
|
96 |
-
"<IPython.core.display.HTML object>"
|
97 |
-
]
|
98 |
-
},
|
99 |
-
"metadata": {},
|
100 |
-
"output_type": "display_data"
|
101 |
-
},
|
102 |
-
{
|
103 |
-
"data": {
|
104 |
-
"text/plain": []
|
105 |
-
},
|
106 |
-
"execution_count": 5,
|
107 |
-
"metadata": {},
|
108 |
-
"output_type": "execute_result"
|
109 |
-
}
|
110 |
-
],
|
111 |
-
"source": [
|
112 |
-
"import gradio as gr\n",
|
113 |
-
"import pickle\n",
|
114 |
-
"import pandas as pd\n",
|
115 |
-
"import shap\n",
|
116 |
-
"import matplotlib.pyplot as plt\n",
|
117 |
-
"\n",
|
118 |
-
"# Load model\n",
|
119 |
-
"filename = 'xgb_h_new.pkl'\n",
|
120 |
-
"with open(filename, 'rb') as f:\n",
|
121 |
-
" loaded_model = pickle.load(f)\n",
|
122 |
-
"\n",
|
123 |
-
"# Setup SHAP\n",
|
124 |
-
"explainer = shap.Explainer(loaded_model)\n",
|
125 |
-
"\n",
|
126 |
-
"# Employee Profiles (Adjusted Top Performer)\n",
|
127 |
-
"employee_profiles = {\n",
|
128 |
-
" \"π High Potential Employee\": [4, 5, 5, 3, 4, 5],\n",
|
129 |
-
" \"π Top Performer\": [5, 5, 5, 3, 5, 5], # Reduced workload\n",
|
130 |
-
" \"β οΈ At-Risk Employee\": [2, 2, 2, 4, 2, 2],\n",
|
131 |
-
" \"π₯ Burnt-Out Employee\": [1, 2, 2, 5, 1, 1]\n",
|
132 |
-
"}\n",
|
133 |
-
"\n",
|
134 |
-
"# Define the prediction function\n",
|
135 |
-
"def main_func(WellBeing, SupportiveGM, Engagement, Workload, WorkEnvironment, Merit):\n",
|
136 |
-
" new_row = pd.DataFrame({\n",
|
137 |
-
" 'WellBeing': [WellBeing],\n",
|
138 |
-
" 'SupportiveGM': [SupportiveGM],\n",
|
139 |
-
" 'Engagement': [Engagement],\n",
|
140 |
-
" 'Workload': [Workload],\n",
|
141 |
-
" 'WorkEnvironment': [WorkEnvironment],\n",
|
142 |
-
" 'Merit': [Merit]\n",
|
143 |
-
" })\n",
|
144 |
-
"\n",
|
145 |
-
" # Predict probability\n",
|
146 |
-
" prob = loaded_model.predict_proba(new_row)\n",
|
147 |
-
" shap_values = explainer(new_row)\n",
|
148 |
-
"\n",
|
149 |
-
" # Calculate probability values\n",
|
150 |
-
" stay_prob = round((1 - float(prob[0][0])) * 100, 2)\n",
|
151 |
-
" leave_prob = round(float(prob[0][0]) * 100, 2)\n",
|
152 |
-
"\n",
|
153 |
-
" # Dynamic risk label: Changes color & text based on probability\n",
|
154 |
-
" risk_label = \"π΄ High Risk of Turnover\" if leave_prob > 50 else \"π’ Low Risk of Turnover\"\n",
|
155 |
-
" risk_color = \"red\" if leave_prob > 50 else \"green\"\n",
|
156 |
-
"\n",
|
157 |
-
" risk_html = f\"\"\"\n",
|
158 |
-
" <div style='padding: 15px; border-radius: 8px;'>\n",
|
159 |
-
" <span style='color: {risk_color}; font-size: 26px; font-weight: bold;'>{risk_label}</span>\n",
|
160 |
-
" <ul style='list-style-type: none; padding-left: 0; font-size: 20px; font-weight: bold; color: #0057B8;'>\n",
|
161 |
-
" <li>π§² Likelihood of Staying: {stay_prob}%</li>\n",
|
162 |
-
" <li>πͺ Likelihood of Leaving: {leave_prob}%</li>\n",
|
163 |
-
" </ul>\n",
|
164 |
-
" </div>\n",
|
165 |
-
" \"\"\"\n",
|
166 |
-
"\n",
|
167 |
-
" # Key Insights (Updated for 0.1-point increments)\n",
|
168 |
-
" insights_html = \"<div style='font-size: 18px;'>\"\n",
|
169 |
-
" for feature, shap_val in dict(zip(new_row.columns, shap_values.values[0])).items():\n",
|
170 |
-
" impact = round(shap_val * 10, 2) # Scaling impact for 0.1 changes\n",
|
171 |
-
" icon = \"π\" if shap_val > 0 else \"π\"\n",
|
172 |
-
" effect = \"raises turnover risk\" if shap_val > 0 else \"improves retention\"\n",
|
173 |
-
" insights_html += f\"<p style='margin: 5px 0;'> {icon} <b>Each 0.1-point increase in {feature} {effect} by {abs(impact)}%.</b></p>\"\n",
|
174 |
-
" insights_html += \"</div>\"\n",
|
175 |
-
"\n",
|
176 |
-
" # Final Layout (Risk + Key Insights)\n",
|
177 |
-
" final_layout = f\"\"\"\n",
|
178 |
-
" <table style='width:100%; border-collapse: collapse; margin-top: 10px; background-color: #FFFFFF;'>\n",
|
179 |
-
" <tr>\n",
|
180 |
-
" <td style='width: 33%; padding: 15px; background-color: #FFFFFF; border-radius: 8px; vertical-align: top;'>\n",
|
181 |
-
" {risk_html}\n",
|
182 |
-
" </td>\n",
|
183 |
-
" <td style='width: 67%; padding: 15px; background-color: #FFFFFF; border-radius: 8px; vertical-align: top;'>\n",
|
184 |
-
" <b style='color: #0057B8; font-size: 22px;'>Key Insights:</b>\n",
|
185 |
-
" {insights_html}\n",
|
186 |
-
" </td>\n",
|
187 |
-
" </tr>\n",
|
188 |
-
" </table>\n",
|
189 |
-
" \"\"\"\n",
|
190 |
-
"\n",
|
191 |
-
" # Retention vs. Turnover Chart\n",
|
192 |
-
" fig, ax = plt.subplots()\n",
|
193 |
-
" categories = [\"Stay\", \"Leave\"]\n",
|
194 |
-
" values = [stay_prob, leave_prob]\n",
|
195 |
-
" colors = [\"#0057B8\", \"#D43F00\"]\n",
|
196 |
-
" ax.barh(categories, values, color=colors)\n",
|
197 |
-
" for i, v in enumerate(values):\n",
|
198 |
-
" ax.text(v + 2, i, f\"{v:.2f}%\", va='center', fontweight='bold', fontsize=12)\n",
|
199 |
-
" ax.set_xlabel(\"Probability (%)\")\n",
|
200 |
-
" ax.set_title(\"Retention vs. Turnover Probability\")\n",
|
201 |
-
" plt.tight_layout()\n",
|
202 |
-
" prob_chart_path = \"prob_chart.png\"\n",
|
203 |
-
" plt.savefig(prob_chart_path, transparent=True)\n",
|
204 |
-
" plt.close()\n",
|
205 |
-
"\n",
|
206 |
-
" # SHAP Chart\n",
|
207 |
-
" fig, ax = plt.subplots()\n",
|
208 |
-
" shap.plots.bar(shap_values[0], max_display=6, show=False)\n",
|
209 |
-
" ax.set_title(\"Key Drivers of Turnover Risk\")\n",
|
210 |
-
" plt.tight_layout()\n",
|
211 |
-
" shap_plot_path = \"shap_plot.png\"\n",
|
212 |
-
" plt.savefig(shap_plot_path, transparent=True)\n",
|
213 |
-
" plt.close()\n",
|
214 |
-
"\n",
|
215 |
-
" return final_layout, prob_chart_path, shap_plot_path\n",
|
216 |
-
"\n",
|
217 |
-
"# UI Setup\n",
|
218 |
-
"with gr.Blocks() as demo:\n",
|
219 |
-
" gr.Markdown(\"\"\"\n",
|
220 |
-
" <div style=\"display: flex; justify-content: center; align-items: center;\">\n",
|
221 |
-
" <img src=\"https://logos-world.net/wp-content/uploads/2021/02/Hilton-Logo.png\" width=\"250px\">\n",
|
222 |
-
" </div>\n",
|
223 |
-
" \"\"\")\n",
|
224 |
-
" gr.Markdown(\"<h1 style='color: #0057B8;'>Hilton Team Member Retention Predictor</h1>\")\n",
|
225 |
-
" gr.Markdown(\"\"\"\n",
|
226 |
-
" <div style='font-size: 20px; color: #0057B8;'>\n",
|
227 |
-
" β¨ <b>Welcome to Hiltonβs Employee Retention Predictor</b><br>\n",
|
228 |
-
" This tool helps <b>HR leaders & managers</b> assess <b>team member engagement</b> \n",
|
229 |
-
" and predict <b>turnover risk</b> using AI-powered insights.<br> \n",
|
230 |
-
" π <b>See what factors drive retention & make data-driven decisions.</b> \n",
|
231 |
-
" </div>\n",
|
232 |
-
" \"\"\")\n",
|
233 |
-
"\n",
|
234 |
-
" # Dropdown for Employee Profiles\n",
|
235 |
-
" profile_dropdown = gr.Dropdown(choices=list(employee_profiles.keys()), label=\"Select Employee Profile\")\n",
|
236 |
-
"\n",
|
237 |
-
" # Sliders for input features\n",
|
238 |
-
" with gr.Row():\n",
|
239 |
-
" WellBeing = gr.Slider(label=\"WellBeing Score\", minimum=1, maximum=5, value=4, step=0.1)\n",
|
240 |
-
" SupportiveGM = gr.Slider(label=\"Supportive GM Score\", minimum=1, maximum=5, value=4, step=0.1)\n",
|
241 |
-
" Engagement = gr.Slider(label=\"Engagement Score\", minimum=1, maximum=5, value=4, step=0.1)\n",
|
242 |
-
" with gr.Row():\n",
|
243 |
-
" Workload = gr.Slider(label=\"Workload Score\", minimum=1, maximum=5, value=4, step=0.1)\n",
|
244 |
-
" WorkEnvironment = gr.Slider(label=\"Work Environment Score\", minimum=1, maximum=5, value=4, step=0.1)\n",
|
245 |
-
" Merit = gr.Slider(label=\"Merit Score\", minimum=1, maximum=5, value=4, step=0.1)\n",
|
246 |
-
"\n",
|
247 |
-
" submit_btn = gr.Button(\"π Click Here to Analyze Retention\")\n",
|
248 |
-
"\n",
|
249 |
-
" # Output elements\n",
|
250 |
-
" prediction = gr.HTML()\n",
|
251 |
-
" with gr.Row():\n",
|
252 |
-
" prob_chart = gr.Image(label=\"Retention vs. Turnover Probability\", type=\"filepath\")\n",
|
253 |
-
" shap_plot = gr.Image(label=\"Key Drivers of Turnover Risk\", type=\"filepath\")\n",
|
254 |
-
"\n",
|
255 |
-
" # Allow profile selection to update sliders\n",
|
256 |
-
" def update_sliders(profile):\n",
|
257 |
-
" if profile in employee_profiles:\n",
|
258 |
-
" return employee_profiles[profile]\n",
|
259 |
-
" return [4, 4, 4, 4, 4, 4]\n",
|
260 |
-
"\n",
|
261 |
-
" profile_dropdown.change(update_sliders, inputs=[profile_dropdown], outputs=[WellBeing, SupportiveGM, Engagement, Workload, WorkEnvironment, Merit])\n",
|
262 |
-
"\n",
|
263 |
-
" submit_btn.click(main_func, [WellBeing, SupportiveGM, Engagement, Workload, WorkEnvironment, Merit], [prediction, prob_chart, shap_plot])\n",
|
264 |
-
"\n",
|
265 |
-
"demo.launch(share=True)\n"
|
266 |
-
]
|
267 |
-
}
|
268 |
-
],
|
269 |
-
"metadata": {
|
270 |
-
"kernelspec": {
|
271 |
-
"display_name": "Python 3 (ipykernel)",
|
272 |
-
"language": "python",
|
273 |
-
"name": "python3"
|
274 |
-
},
|
275 |
-
"language_info": {
|
276 |
-
"codemirror_mode": {
|
277 |
-
"name": "ipython",
|
278 |
-
"version": 3
|
279 |
-
},
|
280 |
-
"file_extension": ".py",
|
281 |
-
"mimetype": "text/x-python",
|
282 |
-
"name": "python",
|
283 |
-
"nbconvert_exporter": "python",
|
284 |
-
"pygments_lexer": "ipython3",
|
285 |
-
"version": "3.11.9"
|
286 |
-
}
|
287 |
-
},
|
288 |
-
"nbformat": 4,
|
289 |
-
"nbformat_minor": 5
|
290 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pickle
|
3 |
+
import pandas as pd
|
4 |
+
import shap
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
|
7 |
+
# Load model
|
8 |
+
filename = 'xgb_h_new.pkl'
|
9 |
+
with open(filename, 'rb') as f:
|
10 |
+
loaded_model = pickle.load(f)
|
11 |
+
|
12 |
+
# Setup SHAP
|
13 |
+
explainer = shap.Explainer(loaded_model)
|
14 |
+
|
15 |
+
# Employee Profiles (Adjusted Top Performer)
|
16 |
+
employee_profiles = {
|
17 |
+
"π High Potential Employee": [4, 5, 5, 3, 4, 5],
|
18 |
+
"π Top Performer": [5, 5, 5, 3, 5, 5], # Reduced workload
|
19 |
+
"β οΈ At-Risk Employee": [2, 2, 2, 4, 2, 2],
|
20 |
+
"π₯ Burnt-Out Employee": [1, 2, 2, 5, 1, 1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
}
|
22 |
+
|
23 |
+
# Define the prediction function
|
24 |
+
def main_func(WellBeing, SupportiveGM, Engagement, Workload, WorkEnvironment, Merit):
|
25 |
+
new_row = pd.DataFrame({
|
26 |
+
'WellBeing': [WellBeing],
|
27 |
+
'SupportiveGM': [SupportiveGM],
|
28 |
+
'Engagement': [Engagement],
|
29 |
+
'Workload': [Workload],
|
30 |
+
'WorkEnvironment': [WorkEnvironment],
|
31 |
+
'Merit': [Merit]
|
32 |
+
})
|
33 |
+
|
34 |
+
# Predict probability
|
35 |
+
prob = loaded_model.predict_proba(new_row)
|
36 |
+
shap_values = explainer(new_row)
|
37 |
+
|
38 |
+
# Calculate probability values
|
39 |
+
stay_prob = round((1 - float(prob[0][0])) * 100, 2)
|
40 |
+
leave_prob = round(float(prob[0][0]) * 100, 2)
|
41 |
+
|
42 |
+
# Dynamic risk label: Changes color & text based on probability
|
43 |
+
risk_label = "π΄ High Risk of Turnover" if leave_prob > 50 else "π’ Low Risk of Turnover"
|
44 |
+
risk_color = "red" if leave_prob > 50 else "green"
|
45 |
+
|
46 |
+
risk_html = f"""
|
47 |
+
<div style='padding: 15px; border-radius: 8px;'>
|
48 |
+
<span style='color: {risk_color}; font-size: 26px; font-weight: bold;'>{risk_label}</span>
|
49 |
+
<ul style='list-style-type: none; padding-left: 0; font-size: 20px; font-weight: bold; color: #0057B8;'>
|
50 |
+
<li>π§² Likelihood of Staying: {stay_prob}%</li>
|
51 |
+
<li>πͺ Likelihood of Leaving: {leave_prob}%</li>
|
52 |
+
</ul>
|
53 |
+
</div>
|
54 |
+
"""
|
55 |
+
|
56 |
+
# Key Insights (Updated for 0.1-point increments)
|
57 |
+
insights_html = "<div style='font-size: 18px;'>"
|
58 |
+
for feature, shap_val in dict(zip(new_row.columns, shap_values.values[0])).items():
|
59 |
+
impact = round(shap_val * 10, 2) # Scaling impact for 0.1 changes
|
60 |
+
icon = "π" if shap_val > 0 else "π"
|
61 |
+
effect = "raises turnover risk" if shap_val > 0 else "improves retention"
|
62 |
+
insights_html += f"<p style='margin: 5px 0;'> {icon} <b>Each 0.1-point increase in {feature} {effect} by {abs(impact)}%.</b></p>"
|
63 |
+
insights_html += "</div>"
|
64 |
+
|
65 |
+
# Final Layout (Risk + Key Insights)
|
66 |
+
final_layout = f"""
|
67 |
+
<table style='width:100%; border-collapse: collapse; margin-top: 10px; background-color: #FFFFFF;'>
|
68 |
+
<tr>
|
69 |
+
<td style='width: 33%; padding: 15px; background-color: #FFFFFF; border-radius: 8px; vertical-align: top;'>
|
70 |
+
{risk_html}
|
71 |
+
</td>
|
72 |
+
<td style='width: 67%; padding: 15px; background-color: #FFFFFF; border-radius: 8px; vertical-align: top;'>
|
73 |
+
<b style='color: #0057B8; font-size: 22px;'>Key Insights:</b>
|
74 |
+
{insights_html}
|
75 |
+
</td>
|
76 |
+
</tr>
|
77 |
+
</table>
|
78 |
+
"""
|
79 |
+
|
80 |
+
# Retention vs. Turnover Chart
|
81 |
+
fig, ax = plt.subplots()
|
82 |
+
categories = ["Stay", "Leave"]
|
83 |
+
values = [stay_prob, leave_prob]
|
84 |
+
colors = ["#0057B8", "#D43F00"]
|
85 |
+
ax.barh(categories, values, color=colors)
|
86 |
+
for i, v in enumerate(values):
|
87 |
+
ax.text(v + 2, i, f"{v:.2f}%", va='center', fontweight='bold', fontsize=12)
|
88 |
+
ax.set_xlabel("Probability (%)")
|
89 |
+
ax.set_title("Retention vs. Turnover Probability")
|
90 |
+
plt.tight_layout()
|
91 |
+
prob_chart_path = "prob_chart.png"
|
92 |
+
plt.savefig(prob_chart_path, transparent=True)
|
93 |
+
plt.close()
|
94 |
+
|
95 |
+
# SHAP Chart
|
96 |
+
fig, ax = plt.subplots()
|
97 |
+
shap.plots.bar(shap_values[0], max_display=6, show=False)
|
98 |
+
ax.set_title("Key Drivers of Turnover Risk")
|
99 |
+
plt.tight_layout()
|
100 |
+
shap_plot_path = "shap_plot.png"
|
101 |
+
plt.savefig(shap_plot_path, transparent=True)
|
102 |
+
plt.close()
|
103 |
+
|
104 |
+
return final_layout, prob_chart_path, shap_plot_path
|
105 |
+
|
106 |
+
# UI Setup
|
107 |
+
with gr.Blocks() as demo:
|
108 |
+
gr.Markdown("""
|
109 |
+
<div style="display: flex; justify-content: center; align-items: center;">
|
110 |
+
<img src="https://logos-world.net/wp-content/uploads/2021/02/Hilton-Logo.png" width="250px">
|
111 |
+
</div>
|
112 |
+
""")
|
113 |
+
gr.Markdown("<h1 style='color: #0057B8;'>Hilton Team Member Retention Predictor</h1>")
|
114 |
+
gr.Markdown("""
|
115 |
+
<div style='font-size: 20px; color: #0057B8;'>
|
116 |
+
β¨ <b>Welcome to Hiltonβs Employee Retention Predictor</b><br>
|
117 |
+
This tool helps <b>HR leaders & managers</b> assess <b>team member engagement</b>
|
118 |
+
and predict <b>turnover risk</b> using AI-powered insights.<br>
|
119 |
+
π <b>See what factors drive retention & make data-driven decisions.</b>
|
120 |
+
</div>
|
121 |
+
""")
|
122 |
+
|
123 |
+
# Dropdown for Employee Profiles
|
124 |
+
profile_dropdown = gr.Dropdown(choices=list(employee_profiles.keys()), label="Select Employee Profile")
|
125 |
+
|
126 |
+
# Sliders for input features
|
127 |
+
with gr.Row():
|
128 |
+
WellBeing = gr.Slider(label="WellBeing Score", minimum=1, maximum=5, value=4, step=0.1)
|
129 |
+
SupportiveGM = gr.Slider(label="Supportive GM Score", minimum=1, maximum=5, value=4, step=0.1)
|
130 |
+
Engagement = gr.Slider(label="Engagement Score", minimum=1, maximum=5, value=4, step=0.1)
|
131 |
+
with gr.Row():
|
132 |
+
Workload = gr.Slider(label="Workload Score", minimum=1, maximum=5, value=4, step=0.1)
|
133 |
+
WorkEnvironment = gr.Slider(label="Work Environment Score", minimum=1, maximum=5, value=4, step=0.1)
|
134 |
+
Merit = gr.Slider(label="Merit Score", minimum=1, maximum=5, value=4, step=0.1)
|
135 |
+
|
136 |
+
submit_btn = gr.Button("π Click Here to Analyze Retention")
|
137 |
+
|
138 |
+
# Output elements
|
139 |
+
prediction = gr.HTML()
|
140 |
+
with gr.Row():
|
141 |
+
prob_chart = gr.Image(label="Retention vs. Turnover Probability", type="filepath")
|
142 |
+
shap_plot = gr.Image(label="Key Drivers of Turnover Risk", type="filepath")
|
143 |
+
|
144 |
+
# Allow profile selection to update sliders
|
145 |
+
def update_sliders(profile):
|
146 |
+
if profile in employee_profiles:
|
147 |
+
return employee_profiles[profile]
|
148 |
+
return [4, 4, 4, 4, 4, 4]
|
149 |
+
|
150 |
+
profile_dropdown.change(update_sliders, inputs=[profile_dropdown], outputs=[WellBeing, SupportiveGM, Engagement, Workload, WorkEnvironment, Merit])
|
151 |
+
|
152 |
+
submit_btn.click(main_func, [WellBeing, SupportiveGM, Engagement, Workload, WorkEnvironment, Merit], [prediction, prob_chart, shap_plot])
|
153 |
+
|
154 |
+
demo.launch()
|