Spaces:
Running
Running
import gradio as gr | |
import pandas as pd | |
from themes import Seafoam | |
from load_data import load_main_table | |
from constants import BANNER, CITATION_TEXT, css, js_code, all_task_types, js_light | |
TYPES = ["number", "markdown", "number"] | |
MAIN_TABLE_COLS = ['Model', 'Language', 'Average Toxicity', 'Expected Maximum Toxicity', 'Empirical Probability'] | |
df_main = load_main_table() | |
available_models = df_main['Model'].unique() | |
MODEL_SIZE = list(df_main['Model Size'].unique()) | |
MODEL_TYPE = list(df_main['Model Type'].unique()) | |
LANGAUGES = list(df_main['Language'].unique()) | |
MODEL_FAMILY = list(df_main['Model Family'].unique()) | |
with open("_intro.md", "r") as f: | |
INTRO_MD = f.read() | |
with open("_about_us.md", "r") as f: | |
ABOUT_MD = f.read() | |
with open("_header.md", "r") as f: | |
HEADER_MD = f.read() | |
with open("_metrics.md", "r") as f: | |
METRIC_MD = f.read() | |
with gr.Blocks(theme=gr.themes.Soft(), css=css, js=js_light) as demo: | |
gr.HTML(BANNER, elem_id="banner") | |
# gr.HTML("<img src='file/image.png' alt='image One'>") | |
gr.Markdown(HEADER_MD, elem_classes="markdown-text") | |
# gr.Image("./data/ptp.png") | |
gr.HTML("<img src='file/data/ptp.png' alt='image One'>") | |
gr.Markdown(f"**Version**: PTP-Small | **# Examples**: 85K | **# Models**: {len(available_models)}", elem_classes="markdown-text") | |
gr.Markdown(METRIC_MD, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("๐ Multilingual Leaderboard", elem_id="od-benchmark-tab-table", id=0, elem_classes="subtab"): | |
print(df_main.head()) | |
mling_df = df_main.loc[df_main['Multilingual']==True, MAIN_TABLE_COLS].copy() | |
del mling_df['Language'] | |
mling_df = mling_df.groupby("Model").agg('mean').reset_index().round(3) | |
mling_df = mling_df.sort_values(by="Average Toxicity") | |
print(mling_df.head()) | |
ablation_table = gr.components.Dataframe( | |
value=mling_df, | |
datatype=TYPES, | |
height=1000, | |
elem_id="mling-table", | |
interactive=False, | |
visible=True, | |
min_width=60, | |
) | |
with gr.TabItem("๐ Ablation Results", elem_id="od-benchmark-tab-table", id=1, elem_classes="subtab"): | |
with gr.Row(): | |
language = gr.CheckboxGroup( | |
choices=LANGAUGES, | |
value=LANGAUGES, | |
label='Language', | |
interactive=True | |
) | |
with gr.Row(): | |
model_family = gr.CheckboxGroup( | |
choices=MODEL_FAMILY, | |
value=MODEL_FAMILY, | |
label='Model Family', | |
interactive=True | |
) | |
with gr.Row(): | |
model_size = gr.CheckboxGroup( | |
choices=MODEL_SIZE, | |
value=MODEL_SIZE, | |
label='Model Size', | |
interactive=True, | |
) | |
model_type = gr.CheckboxGroup( | |
choices=MODEL_TYPE, | |
value=MODEL_TYPE, | |
label='Model Type', | |
interactive=True | |
) | |
ablation_table = gr.components.Dataframe( | |
value=df_main[MAIN_TABLE_COLS], | |
datatype=TYPES, | |
height=500, | |
elem_id="full-table", | |
interactive=False, | |
visible=True, | |
min_width=60, | |
) | |
def filter_df(model_size, model_type, language, model_family): | |
df = df_main.copy() | |
print(df.isnull().sum()) | |
df = df[df['Model Type'].isin(model_type)] | |
df = df[df['Model Size'].isin(model_size)] | |
df = df[df['Language'].isin(language)] | |
df = df[df['Model Family'].isin(model_family)] | |
df = df.sort_values(by="Average Toxicity") | |
assert (df.isnull().sum().sum())==0 | |
comp = gr.components.DataFrame( | |
value=df[MAIN_TABLE_COLS], | |
datatype=TYPES, | |
interactive=False, | |
visible=True) | |
return comp | |
for cbox in [model_size, model_type, language, model_family]: | |
cbox.change(fn=filter_df, inputs=[model_size, model_type, language, model_family], outputs=ablation_table) | |
with gr.TabItem("๐ฎ About Us", elem_id="od-benchmark-tab-table", id=2): | |
gr.Markdown(ABOUT_MD, elem_classes="markdown-text") | |
with gr.Row(): | |
with gr.Accordion("๐ Citation", open=False, elem_classes="accordion-label"): | |
gr.Textbox( | |
value=CITATION_TEXT, | |
lines=7, | |
label="Copy the BibTeX snippet to cite this source", | |
elem_id="citation-button", | |
show_copy_button=True) | |
if __name__ == '__main__': | |
demo.launch(share=True, allowed_paths=["."]) |