Spaces:
Sleeping
Sleeping
File size: 10,539 Bytes
69f835c 2c2454d 69f835c 1de6f49 92e88b1 69f835c 3ee932d 69f835c c067558 69f835c 0efa7ff 69f835c 0efa7ff 69f835c c067558 69f835c 0efa7ff 69f835c 0efa7ff 69f835c 7822d49 92e88b1 69f835c e4082cd 69f835c 954d828 85dfdf5 954d828 69f835c 954d828 69f835c 3948cf8 69f835c 6c854d7 ed4a009 69f835c ed4a009 afc80d1 ed4a009 afc80d1 ed4a009 afc80d1 ed4a009 afc80d1 ed4a009 afc80d1 ed4a009 69f835c 0efa7ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import streamlit as st
import os
import nest_asyncio
import re
from pathlib import Path
import typing as t
import base64
from mimetypes import guess_type
from llama_parse import LlamaParse
from llama_index.core.schema import TextNode
from llama_index.core import VectorStoreIndex, StorageContext, load_index_from_storage, Settings
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.llms.openai import OpenAI
from llama_index.core.query_engine import CustomQueryEngine
from llama_index.multi_modal_llms.openai import OpenAIMultiModal
from llama_index.core.prompts import PromptTemplate
from llama_index.core.schema import ImageNode
from llama_index.core.base.response.schema import Response
from typing import Any, List, Optional, Tuple
from llama_index.core.postprocessor.types import BaseNodePostprocessor
from llama_index.core.query_engine import CustomQueryEngine
from llama_index.core.retrievers import BaseRetriever
from llama_index.multi_modal_llms.openai import OpenAIMultiModal
from llama_index.core.schema import NodeWithScore, MetadataMode, QueryBundle
from llama_index.core.base.response.schema import Response
from llama_index.core.prompts import PromptTemplate
from llama_index.core.schema import ImageNode
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.prompts import HumanMessagePromptTemplate
from langchain_core.messages import SystemMessage
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
nest_asyncio.apply()
# Setting API keys
os.environ["OPENAI_API_KEY"] = os.getenv('OPENAI_API_KEY')
os.environ["LLAMA_CLOUD_API_KEY"] = os.getenv('LLAMA_CLOUD_API_KEY')
# Initialize Streamlit app
st.title("Medical Knowledge Base & Query System")
st.sidebar.title("Settings")
# User input for file upload
st.sidebar.subheader("Upload Knowledge Base")
uploaded_file = st.sidebar.file_uploader("Upload a medical text book (pdf)", type=["jpg", "png", "pdf"])
# # Ensure the 'files' directory exists
# if not os.path.exists("files"):
# os.makedirs("files")
# Initialize the parser
parser = LlamaParse(
result_type="markdown",
parsing_instruction="You are given a medical textbook on medicine",
use_vendor_multimodal_model=True,
vendor_multimodal_model_name="gpt-4o-mini-2024-07-18",
show_progress=True,
verbose=True,
invalidate_cache=True,
do_not_cache=True,
num_workers=8,
language="en"
)
# Initialize md_json_objs as an empty list
md_json_objs = []
# Upload and process file
if uploaded_file:
st.sidebar.write("Processing file...")
file_path = f"{uploaded_file.name}"
with open(file_path, "wb") as f:
f.write(uploaded_file.read())
# Parse the uploaded image
md_json_objs = parser.get_json_result([file_path])
image_dicts = parser.get_images(md_json_objs, download_path="data_images")
# Extract and display parsed information
st.write("File successfully processed!")
st.write(f"Processed file: {uploaded_file.name}")
# Function to encode image to data URL
def local_image_to_data_url(image_path):
mime_type, _ = guess_type(image_path)
if mime_type is None:
mime_type = 'image/png'
with open(image_path, "rb") as image_file:
base64_encoded_data = base64.b64encode(image_file.read()).decode('utf-8')
return f"data:{mime_type};base64,{base64_encoded_data}"
# Function to get sorted image files
def get_page_number(file_name):
match = re.search(r"-page-(\d+)\.jpg$", str(file_name))
if match:
return int(match.group(1))
return 0
def _get_sorted_image_files(image_dir):
raw_files = [f for f in list(Path(image_dir).iterdir()) if f.is_file()]
sorted_files = sorted(raw_files, key=get_page_number)
return sorted_files
def get_text_nodes(md_json_objs, image_dir) -> t.List[TextNode]:
nodes = []
for result in md_json_objs:
json_dicts = result["pages"]
document_name = result["file_path"].split('/')[-1]
docs = [doc["md"] for doc in json_dicts]
image_files = _get_sorted_image_files(image_dir)
for idx, doc in enumerate(docs):
node = TextNode(
text=doc,
metadata={"image_path": str(image_files[idx]), "page_num": idx + 1, "document_name": document_name},
)
nodes.append(node)
return nodes
# Load text nodes if md_json_objs is not empty
if md_json_objs:
text_nodes = get_text_nodes(md_json_objs, "data_images")
else:
text_nodes = []
# Setup index and LLM
embed_model = HuggingFaceEmbedding(model_name="neuml/pubmedbert-base-embeddings")
llm = OpenAI(model="gpt-4o-mini-2024-07-18", temperature=0.1)
Settings.llm = llm
Settings.embed_model = embed_model
if not os.path.exists("storage_manuals"):
index = VectorStoreIndex(text_nodes, embed_model=embed_model)
index.storage_context.persist(persist_dir="./storage_manuals")
else:
ctx = StorageContext.from_defaults(persist_dir="./storage_manuals")
index = load_index_from_storage(ctx)
retriever = index.as_retriever()
# Query input
st.subheader("Ask a Question")
query_text = st.text_input("Enter your query:")
uploaded_query_image = st.file_uploader("Upload a query image (if any):", type=["jpg", "png"])
# Encode query image if provided
encoded_image_url = None
if uploaded_query_image:
query_image_path = f"{uploaded_query_image.name}"
with open(query_image_path, "wb") as img_file:
img_file.write(uploaded_query_image.read())
encoded_image_url = local_image_to_data_url(query_image_path)
# Setup query engine
# QA_PROMPT_TMPL = """
# You are a friendly medical chatbot designed to assist users by providing accurate and detailed responses to medical questions based on information from medical books.
# ### Context:
# ---------------------
# {context_str}
# ---------------------
# ### Query Text:
# {query_str}
# ### Query Image:
# ---------------------
# {encoded_image_url}
# ---------------------
# ### Answer:
# """
QA_PROMPT_TMPL="""You are a friendly medical chatbot designed to assist users by providing accurate and detailed responses to medical questions based on information from medical books.
In this task, you will receive parsed text from books in two formats: **Markdown mode** and **Raw text mode**. Markdown mode converts relevant diagrams into tables for clarity, while raw text mode preserves the original layout of the content.
### Key Guidelines:
- **Prioritize Image Information**: Always analyze the image provided first for relevant details. Use the text or markdown information only if the image does not contain the necessary information.
- **No Image Links**: Your responses should contain only text explanations. Do not include links to images or other resources.
- **Contextual Answers**: Your answers should strictly rely on the provided context information. If the information to answer the query is not present, respond with "I don't know," and provide the page number and document name where similar information can be found.
### Context:
---------------------
{context_str}
---------------------
### Query Text:
{query_str}
### Query Image:
---------------------
{encoded_image_url}
---------------------
### Answer:
"""
QA_PROMPT = PromptTemplate(QA_PROMPT_TMPL)
gpt_4o_mm = OpenAIMultiModal(model="gpt-4o-mini-2024-07-18", temperature=0.1)
# class MultimodalQueryEngine(CustomQueryEngine):
# # def __init__(self, qa_prompt, retriever, multi_modal_llm, node_postprocessors=[]):
# # super().__init__(qa_prompt=qa_prompt, retriever=retriever, multi_modal_llm=multi_modal_llm, node_postprocessors=node_postprocessors)
# # def custom_query(self, query_str):
# # nodes = self.retriever.retrieve(query_str)
# # image_nodes = [NodeWithScore(node=ImageNode(image_path=n.node.metadata["image_path"])) for n in nodes]
# # ctx_str = "\n\n".join([r.node.get_content().strip() for r in nodes])
# # fmt_prompt = self.qa_prompt.format(context_str=ctx_str, query_str=query_str, encoded_image_url=encoded_image_url)
# # llm_response = self.multi_modal_llm.complete(prompt=fmt_prompt, image_documents=[image_node.node for image_node in image_nodes])
# # return Response(response=str(llm_response), source_nodes=nodes, metadata={"text_nodes": text_nodes, "image_nodes": image_nodes})
class MultimodalQueryEngine(CustomQueryEngine):
qa_prompt: PromptTemplate
retriever: BaseRetriever
multi_modal_llm: OpenAIMultiModal
node_postprocessors: Optional[List[BaseNodePostprocessor]]
def __init__(
self,
qa_prompt: PromptTemplate,
retriever: BaseRetriever,
multi_modal_llm: OpenAIMultiModal,
node_postprocessors: Optional[List[BaseNodePostprocessor]] = [],
):
super().__init__(
qa_prompt=qa_prompt,
retriever=retriever,
multi_modal_llm=multi_modal_llm,
node_postprocessors=node_postprocessors
)
def custom_query(self, query_str: str):
# retrieve most relevant nodes
nodes = self.retriever.retrieve(query_str)
for postprocessor in self.node_postprocessors:
nodes = postprocessor.postprocess_nodes(
nodes, query_bundle=QueryBundle(query_str)
)
# create image nodes from the image associated with those nodes
image_nodes = [
NodeWithScore(node=ImageNode(image_path=n.node.metadata["image_path"]))
for n in nodes
]
# create context string from parsed markdown text
ctx_str = "\n\n".join(
[r.node.get_content(metadata_mode=MetadataMode.LLM).strip() for r in nodes]
)
# prompt for the LLM
fmt_prompt = self.qa_prompt.format(
context_str=ctx_str, query_str=query_str, encoded_image_url=encoded_image_url
)
# use the multimodal LLM to interpret images and generate a response to the prompt
llm_response = self.multi_modal_llm.complete(
prompt=fmt_prompt,
image_documents=[image_node.node for image_node in image_nodes],
)
return Response(
response=str(llm_response),
source_nodes=nodes,
metadata={"text_nodes": nodes, "image_nodes": image_nodes},
)
query_engine = MultimodalQueryEngine(QA_PROMPT, retriever, gpt_4o_mm)
# Handle query
if query_text:
st.write("Querying...")
response = query_engine.custom_query(query_text)
st.markdown(response.response) |