Upload folder using huggingface_hub
Browse files- .gitattributes +3 -0
- app.py +117 -0
- faiss_index_medical_MedEmbed/index.faiss +3 -0
- faiss_index_medical_MedEmbed/index.pkl +3 -0
- faiss_index_medical_OpenAI/index.faiss +3 -0
- faiss_index_medical_OpenAI/index.pkl +3 -0
- medical.png +0 -0
- medical_documents/14.Medicine (1).pdf +3 -0
- requirements.txt +35 -0
.gitattributes
CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
faiss_index_medical_MedEmbed/index.faiss filter=lfs diff=lfs merge=lfs -text
|
37 |
+
faiss_index_medical_OpenAI/index.faiss filter=lfs diff=lfs merge=lfs -text
|
38 |
+
medical_documents/14.Medicine[[:space:]](1).pdf filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
from PIL import Image, ImageOps
|
4 |
+
from langchain_openai import ChatOpenAI
|
5 |
+
from langchain.embeddings import HuggingFaceEmbeddings, OpenAIEmbeddings
|
6 |
+
from langchain.vectorstores import FAISS
|
7 |
+
from langchain.chains import RetrievalQA
|
8 |
+
from langchain import PromptTemplate
|
9 |
+
from langchain.retrievers import ContextualCompressionRetriever
|
10 |
+
from langchain.retrievers.document_compressors import FlashrankRerank
|
11 |
+
from dotenv import load_dotenv
|
12 |
+
from langchain_community.embeddings.bedrock import BedrockEmbeddings
|
13 |
+
load_dotenv()
|
14 |
+
# Hyperparameters
|
15 |
+
PDF_CHUNK_SIZE = 1024
|
16 |
+
PDF_CHUNK_OVERLAP = 256
|
17 |
+
k = 3
|
18 |
+
|
19 |
+
# Load favicon image
|
20 |
+
def load_and_pad_image(image_path, size=(64, 64)):
|
21 |
+
img = Image.open(image_path)
|
22 |
+
return ImageOps.pad(img, size)
|
23 |
+
|
24 |
+
favicon_path = "medical.png"
|
25 |
+
favicon_image = load_and_pad_image(favicon_path)
|
26 |
+
|
27 |
+
# Streamlit Page Config
|
28 |
+
st.set_page_config(
|
29 |
+
page_title="Chatbot",
|
30 |
+
page_icon=favicon_image,
|
31 |
+
)
|
32 |
+
|
33 |
+
# Set up logo and title
|
34 |
+
col1, col2 = st.columns([1, 8])
|
35 |
+
with col1:
|
36 |
+
st.image(favicon_image)
|
37 |
+
with col2:
|
38 |
+
st.markdown(
|
39 |
+
"""
|
40 |
+
<h1 style='text-align: left; margin-top: -12px;'>Chatbot</h1>
|
41 |
+
""", unsafe_allow_html=True
|
42 |
+
)
|
43 |
+
|
44 |
+
# Model and Embedding Selection
|
45 |
+
model_options = ["gpt-4o", "gpt-4o-mini", "deepseek-chat"]
|
46 |
+
selected_model = st.selectbox("Choose a GPT model", model_options)
|
47 |
+
|
48 |
+
embedding_model_options = ["OpenAI", "Huggingface MedEmbed"]
|
49 |
+
selected_embedding_model = st.selectbox("Choose an Embedding model", embedding_model_options)
|
50 |
+
|
51 |
+
# Load the model
|
52 |
+
def get_llm(selected_model):
|
53 |
+
api_key = os.getenv("DeepSeek_API_KEY") if selected_model == "deepseek-chat" else os.getenv("OPENAI_API_KEY")
|
54 |
+
return ChatOpenAI(
|
55 |
+
model=selected_model,
|
56 |
+
temperature=0,
|
57 |
+
max_tokens=None,
|
58 |
+
api_key=api_key,
|
59 |
+
)
|
60 |
+
|
61 |
+
# Cache the vector store loading
|
62 |
+
@st.cache_resource
|
63 |
+
def load_vector_store(selected_embedding_model):
|
64 |
+
if selected_embedding_model == "OpenAI":
|
65 |
+
embeddings = OpenAIEmbeddings(model="text-embedding-3-large", api_key=os.getenv("OPENAI_API_KEY"))
|
66 |
+
return FAISS.load_local("faiss_index_medical_OpenAI", embeddings, allow_dangerous_deserialization=True)
|
67 |
+
else:
|
68 |
+
embeddings = HuggingFaceEmbeddings(model_name="abhinand/MedEmbed-large-v0.1")
|
69 |
+
return FAISS.load_local("faiss_index_medical_MedEmbed", embeddings, allow_dangerous_deserialization=True)
|
70 |
+
|
71 |
+
# Load the selected vector store
|
72 |
+
vector_store = load_vector_store(selected_embedding_model)
|
73 |
+
llm = get_llm(selected_model)
|
74 |
+
|
75 |
+
# Main App Logic
|
76 |
+
def main():
|
77 |
+
st.session_state['knowledge_base'] = vector_store
|
78 |
+
st.header("Ask a Question")
|
79 |
+
|
80 |
+
question = st.text_input("Enter your question")
|
81 |
+
if st.button("Get Answer"):
|
82 |
+
knowledge_base = st.session_state['knowledge_base']
|
83 |
+
retriever = knowledge_base.as_retriever(search_kwargs={"k": k})
|
84 |
+
compressor = FlashrankRerank()
|
85 |
+
compression_retriever = ContextualCompressionRetriever(
|
86 |
+
base_compressor=compressor, base_retriever=retriever
|
87 |
+
)
|
88 |
+
|
89 |
+
system_prompt = """
|
90 |
+
You are a friendly and knowledgeable assistant who is an expert in medical education...
|
91 |
+
"""
|
92 |
+
|
93 |
+
template = f"""
|
94 |
+
{system_prompt}
|
95 |
+
-------------------------------
|
96 |
+
Context: {{context}}
|
97 |
+
Question: {{question}}
|
98 |
+
Answer:
|
99 |
+
"""
|
100 |
+
|
101 |
+
prompt = PromptTemplate(
|
102 |
+
template=template,
|
103 |
+
input_variables=['context', 'question']
|
104 |
+
)
|
105 |
+
|
106 |
+
qa_chain = RetrievalQA.from_chain_type(
|
107 |
+
llm,
|
108 |
+
retriever=compression_retriever,
|
109 |
+
return_source_documents=True,
|
110 |
+
chain_type_kwargs={"prompt": prompt}
|
111 |
+
)
|
112 |
+
|
113 |
+
response = qa_chain.invoke({"query": question})
|
114 |
+
st.write(f"**Answer:** {response['result']}")
|
115 |
+
|
116 |
+
if __name__ == "__main__":
|
117 |
+
main()
|
faiss_index_medical_MedEmbed/index.faiss
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55c4ea45d2aa23d75f67e252d8f5e02e7b2b3c55324cc247e622752677b0ae68
|
3 |
+
size 5873709
|
faiss_index_medical_MedEmbed/index.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be1ef50261c1eb4e4526269e9839f84000a4fb76640e063be2406979aef5d4b2
|
3 |
+
size 2787575
|
faiss_index_medical_OpenAI/index.faiss
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a7de27af2193ddaa323c93cc83e4e5ec41d45776e1f9832954ab7bf92101532
|
3 |
+
size 17621037
|
faiss_index_medical_OpenAI/index.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3899b2bffd0764a966d8f25aabccd32a99b3cacecfcfd2f69e3b4cf3487e6dd3
|
3 |
+
size 2787575
|
medical.png
ADDED
![]() |
medical_documents/14.Medicine (1).pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:18cebaeb63c2b575edae04918575433efc9a9e3ed6d62c60a9164218a0d46d6e
|
3 |
+
size 8776919
|
requirements.txt
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
boto3
|
2 |
+
awscli
|
3 |
+
chromadb==0.4.14
|
4 |
+
rank-bm25
|
5 |
+
python-docx
|
6 |
+
langchain
|
7 |
+
langchain-community
|
8 |
+
sentence-transformers
|
9 |
+
pypdf
|
10 |
+
rapidocr-onnxruntime
|
11 |
+
pymupdf
|
12 |
+
llama-index-core
|
13 |
+
streamlit
|
14 |
+
llama_index
|
15 |
+
llama-index-llms-bedrock
|
16 |
+
faiss-cpu
|
17 |
+
langchain_openai
|
18 |
+
python-dotenv
|
19 |
+
transformers
|
20 |
+
sentence-transformers
|
21 |
+
unstructured
|
22 |
+
unstructured[pdf]
|
23 |
+
pymupdf4llm
|
24 |
+
requests
|
25 |
+
beautifulsoup4
|
26 |
+
selenium
|
27 |
+
PyPDF2
|
28 |
+
playwright
|
29 |
+
#!playwright install
|
30 |
+
nest_asyncio
|
31 |
+
firecrawl
|
32 |
+
langchain-cohere
|
33 |
+
cohere-aws
|
34 |
+
flashrank
|
35 |
+
langchain-openai
|