import tensorflow as tf import numpy as np import gradio as gr from tensorflow.keras.models import load_model model = load_model('SD_4car_20230110_h5') def car4_classifier(img): img=np.expand_dims(img, 0) img = preprocess_input(img) predictionsA3 = model.predict(img) pred=int(list(np.argmax(predictionsA3, axis=1))[0]) if pred==0: car="GTR" elif pred==1: car="Porsche" elif pred==2: car="LEXUS" else : car="Lamborghini" return car label=gr.outputs.Label(num_top_classes=1) interface=gr.Interface(fn=car4_classifier, inputs="image", outputs=label, live=False, title="TOSHISTATS-supercar-classifier (GTR,Porsche,Lexus,Lamborghini)") interface.launch(debug=True)