File size: 14,897 Bytes
3371cbb
 
 
7874811
3371cbb
 
 
 
 
8b4ef36
7874811
 
3371cbb
 
64ff68e
 
7874811
64ff68e
 
7874811
64ff68e
 
 
 
 
 
 
 
 
 
7874811
64ff68e
 
 
 
 
 
 
 
 
 
 
 
 
 
3371cbb
7874811
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3371cbb
7874811
 
 
 
 
64ff68e
3371cbb
 
 
 
 
 
 
 
7874811
3371cbb
 
7874811
3371cbb
 
 
 
 
7874811
 
 
 
a486e08
7874811
 
3371cbb
 
 
 
7874811
 
 
 
 
 
 
64ff68e
3371cbb
 
7874811
 
 
 
3371cbb
 
60a24f5
3371cbb
64ff68e
3371cbb
 
 
 
7874811
3371cbb
2b952c8
7874811
 
 
64ff68e
 
 
7874811
64ff68e
7874811
64ff68e
7874811
 
 
 
 
 
 
 
64ff68e
a7abc59
3371cbb
7874811
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3371cbb
 
 
 
 
64ff68e
3371cbb
dfcae18
3371cbb
 
7874811
3371cbb
 
 
7874811
3371cbb
 
 
7874811
3371cbb
64ff68e
 
dbe0fc1
 
3371cbb
7874811
 
 
 
 
dbe0fc1
3371cbb
 
dbe0fc1
7874811
b894dac
64ff68e
 
7874811
3371cbb
 
 
 
64ff68e
dbe0fc1
64ff68e
dbe0fc1
34e9e2e
3371cbb
 
 
 
 
 
 
 
 
64ff68e
 
 
 
3371cbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64ff68e
3371cbb
 
64ff68e
3371cbb
 
 
 
 
 
 
 
 
dc67b1a
3371cbb
dc67b1a
 
 
 
3371cbb
 
 
64ff68e
3371cbb
 
 
 
 
c70c5d9
7874811
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3371cbb
 
 
 
 
 
64ff68e
3371cbb
64ff68e
3371cbb
64ff68e
3371cbb
 
 
 
 
 
 
 
 
c70c5d9
e81d8f7
3371cbb
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
import gradio as gr
import numpy as np
import random
# import spaces #[uncomment to use ZeroGPU]
import os
from PIL import Image, ImageDraw, ImageFont
import torch
from PIL import Image
from diffusers.utils import load_image
from diffusers import DPMSolverSDEScheduler
from diffusers import StableDiffusionXLImg2ImgPipeline, DPMSolverMultistepScheduler, AutoencoderTiny, \
    StableDiffusionXLControlNetPipeline, ControlNetModel
from diffusers.utils import load_image
from diffusers.image_processor import IPAdapterMaskProcessor
from torch import nn


### auxiliary functions

def ip_guide(guide, pool,num=3):
    distances = []
    cos = nn.CosineSimilarity(dim=1, eps=1e-6)
    for embed in pool:
        dist = cos(guide, embed.to('cuda'))
        distances.append(dist)
    ### find the indexes of the top 5 embeddings
    indexed_distances = list(enumerate(distances))
    # Sort the list of pairs based on the scores
    sorted_distances = sorted(indexed_distances, key=lambda x: x[1])
    # Extract the indexes of the lowest scores
    lowest_indexes = [index for index, score in sorted_distances[:num]]

    ### return the embeddings with lowest_indexes
    return [pool[i] for i in lowest_indexes], lowest_indexes


def make_inpaint_condition(image, image_mask):
    image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
    image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0

    assert image.shape[0:1] == image_mask.shape[0:1]
    image[image_mask > 0.5] = -1.0  # set as masked pixel
    image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
    image = torch.from_numpy(image)
    return image

def find_token_sequence_in_pre_tokenized(input_string, other_string,pipe):
    # Load the tokenizer
    tokenizer = pipe.tokenizer

    # Tokenize the input string
    input_tokens = tokenizer.tokenize(input_string)

    # Tokenize the other string

    pre_tokenized_tokens = tokenizer.tokenize(other_string)
    # Find matching token sequences and their indexes
    matching_sequences = []
    input_length = len(input_tokens)
    for i in range(len(pre_tokenized_tokens) - input_length + 1):
        if pre_tokenized_tokens[i:i + input_length] == input_tokens:
            matching_sequences.append((pre_tokenized_tokens[i:i + input_length], i))

    return matching_sequences


device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/sdxl-turbo"  # Replace to the model you would like to use

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

processor_mask = IPAdapterMaskProcessor()
controlnets = [
    ControlNetModel.from_pretrained(
        "diffusers/controlnet-depth-sdxl-1.0", variant="fp16", use_safetensors=True, torch_dtype=torch.float16
    ),
    ControlNetModel.from_pretrained(
        "diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16, use_safetensors=True, variant="fp16"
    ),
]

###load pipelines

pipe_CN = StableDiffusionXLControlNetPipeline.from_pretrained("SG161222/RealVisXL_V5.0", torch_dtype=torch.float16,
                                                              controlnet=[controlnets[0], controlnets[0],
                                                                          controlnets[1]], use_safetensors=True,
                                                              variant='fp16')
###pipe_CN.vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=torch.float16)
pipe_CN.scheduler = DPMSolverSDEScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder="scheduler",
                                                          use_karras_sigmas=True)
pipe_CN.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
pipe_CN.to("cuda")

##############################load loras
pipe_CN.load_lora_weights('Tonioesparza/ourhood_training_dreambooth_lora_2_0',
                                   weight_name='pytorch_lora_weights.safetensors')
#state_dict, network_alphas = StableDiffusionXLControlNetPipeline.lora_state_dict('Tonioesparza/ourhood_training_dreambooth_lora_2_0', weight_name='pytorch_lora_weights.safetensors')
#pipe_CN.load_lora_into_unet(state_dict, network_alphas, pipe_CN.unet, adapter_name='unet_ourhood')
#pipe_CN.load_lora_into_text_encoder(state_dict, network_alphas, pipe_CN.text_encoder, adapter_name='text_ourhood')
#pipe_CN.load_lora_into_text_encoder(state_dict, network_alphas, pipe_CN.text_encoder, prefix='2', adapter_name='text_2_ourhood')
#pipe_CN.set_adapters(["unet_ourhood", "text_ourhood", "text_2_ourhood"], adapter_weights=[1.0, 1.0, 1.0])

pipe_CN.fuse_lora()

refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0",
                                                           text_encoder_2=pipe_CN.text_encoder_2, vae=pipe_CN.vae,
                                                           torch_dtype=torch.float16, use_safetensors=True,
                                                           variant="fp16")
refiner.to("cuda")

ip_pool = torch.load("./embeds_cases_for_ip.pt")

pool = list(ip_pool.values())

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

slingshot = torch.load("./slingshot.pt")

def ourhood_inference(prompt=str, num_inference_steps=int, scaffold=int, seed=int, cases_strength=float , cases_scope=int ):
    ###pro_encode = pipe_cn.encode_text(prompt) ###ip_images init

    condition = 'both'

    guide = pipe_CN.encode_prompt(prompt)

    closest, indexes = ip_guide(guide[2], pool,cases_scope)

    ### torch.mean de los indexes

    ip_means = torch.mean(torch.stack([pool[i] for i in indexes]), dim=0)

    print([list(ip_pool.keys())[i] for i in indexes])

    ip_embeds = torch.cat([torch.unsqueeze(torch.zeros_like(closest[0]), 0), torch.unsqueeze(ip_means, 0)], 0).to(
        dtype=torch.float16, device='cuda')

    pipe_CN.set_ip_adapter_scale([[cases_strength]])

    prompt1 = 'A photograph, of an OurHood privacy booth, with a silken oak frame, hickory stained melange polyester fabric, in ' + prompt

    ### prompt encoding

    text_inputs = pipe_CN.tokenizer(
        prompt1,
        padding="max_length",
        max_length=pipe_CN.tokenizer.model_max_length,
        truncation=True,
        return_tensors="pt",
    )

    text_input_ids = text_inputs.input_ids

    prompt_embeds_1 = pipe_CN.text_encoder(text_input_ids.to('cuda'), output_hidden_states=True)

    prompt_embeds_1 = prompt_embeds_1.hidden_states[-2]

    ###embed prompt encoding 2

    prompt_embeds_2 = pipe_CN.text_encoder_2(text_input_ids.to('cuda'), output_hidden_states=True)

    pooled_prompt_embeds_2 = prompt_embeds_2[0]

    prompt_embeds_2 = prompt_embeds_2.hidden_states[-2]

    #### substraction

    if condition == 'both':

        matches = find_token_sequence_in_pre_tokenized('ourhood privacy booth', prompt1, pipe_CN)

        items = []

        for match in matches:
            for w in range(len(match[0])):
                items.append(match[1] + w)

        for it in items:
            prompt_embeds_2[0][it] = prompt_embeds_2[0][it] + slingshot['b'].to('cuda')

        pooled_prompt_embeds = pooled_prompt_embeds_2 + slingshot['b'].to('cuda')

    elif condition == 'pooled':

        pooled_prompt_embeds = pooled_prompt_embeds_2 + slingshot['b'].to('cuda')

    elif condition == 'embeds':

        matches = find_token_sequence_in_pre_tokenized('ourhood privacy booth', prompt1, pipe_CN)

        items = []

        for match in matches:
            for w in range(len(match[0])):
                items.append(match[1] + w)

        for it in items:
            prompt_embeds_2[0][it] = prompt_embeds_2[0][it] + slingshot['b'].to('cuda')

    ### concatenation

    prompt_embeds = torch.cat([prompt_embeds_1, prompt_embeds_2], dim=-1)

    ### create negative embeds text encoder 1

    negative_prompt = "deformed, ugly, wrong proportion, low res, worst quality, low quality,text,watermark"

    max_length = prompt_embeds.shape[1]

    uncond_input = pipe_CN.tokenizer(
        negative_prompt,
        padding="max_length",
        max_length=max_length,
        truncation=True,
        return_tensors="pt",
    )

    uncond_input_ids = uncond_input.input_ids

    negative_prompt_embeds_1 = pipe_CN.text_encoder(
        uncond_input_ids.to('cuda'),
        output_hidden_states=True,
    )

    negative_prompt_embeds_1 = negative_prompt_embeds_1.hidden_states[-2]

    ### create negative embeds text encoder 2

    negative_prompt_embeds_2 = pipe_CN.text_encoder_2(
        uncond_input_ids.to('cuda'),
        output_hidden_states=True,
    )

    negative_pooled_prompt_embeds = negative_prompt_embeds_2[0]

    negative_prompt_embeds_2 = negative_prompt_embeds_2.hidden_states[-2]

    ### negative concatenation

    negative_prompt_embeds = torch.cat([negative_prompt_embeds_1, negative_prompt_embeds_2], dim=-1)

    ### function has no formats defined

    scaff_dic = {1: {
        'mask1': "https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/mask_in_square_2.png",
        'mask2': "https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/mask_out_square_2.png",
        'depth_image': "https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/mask_depth_noroof_square.png",
        'canny_image': "https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/mask_depth_solo_square.png"},
                 2: {
                     'mask1': "https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/mask_in_C.png",
                     'mask2': "https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/mask_out_C.png",
                     'depth_image': "https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/depth_C.png",
                     'canny_image': "https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/canny_C_solo.png"},
                 3: {
                     'mask1': "https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/mask_in_B.png",
                     'mask2': "https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/mask_out_B.png",
                     'depth_image': "https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/depth_B.png",
                     'canny_image': "https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/canny_B_solo.png"}}
    ### mask init

    output_height = 1024
    output_width = 1024

    mask1 = load_image(scaff_dic[scaffold]['mask1'])
    mask2 = load_image(scaff_dic[scaffold]['mask2'])

    masks = processor_mask.preprocess([mask1], height=output_height, width=output_width)
    masks = [masks.reshape(1, masks.shape[0], masks.shape[2], masks.shape[3])]

    ###precomputed depth image

    depth_image = load_image(scaff_dic[scaffold]['depth_image'])
    canny_image = load_image(scaff_dic[scaffold]['canny_image'])
    masked_depth = make_inpaint_condition(depth_image, mask2)

    images_CN = [depth_image, canny_image]

    ### inference

    n_steps = num_inference_steps

    generator = torch.Generator(device="cuda").manual_seed(seed)

    results = pipe_CN(
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds_2,
        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
        ip_adapter_image_embeds=[ip_embeds],
        generator=generator,
        num_inference_steps=n_steps,
        num_images_per_prompt=1,
        denoising_end=0.95,
        image=[depth_image, masked_depth, canny_image],
        output_type="latent",
        control_guidance_start=[0.0, 0.35, 0.35],
        control_guidance_end=[0.35, 0.95, 0.95],
        controlnet_conditioning_scale=[0.35, 0.95, 0.95],
        cross_attention_kwargs={"ip_adapter_masks": masks}
    ).images[0]

    image = refiner(
        prompt=prompt1,
        generator=generator,
        num_inference_steps=n_steps,
        denoising_start=0.95,
        image=results,
    ).images[0]

    return image



#@spaces.GPU #[uncomment to use ZeroGPU]

examples = [
    "in a British museum, pavillion, masonry, high-tables and chairs",
    "in a high ceilinged atrium, glass front, plantwalls, concrete floor, furniture, golden hour",
    "in a colorful open office environment",
    " in a Nordic atrium environment"]

css="""
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # HB8-Ourhood inference test
        """)
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Setting prompt",
                show_label=False,
                max_lines=1,
                placeholder="Where do you want to show the Ourhood pod?",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            
            perspective = gr.Slider(
                label="perspective",
                minimum=1,
                maximum=3,
                step=1,
                value=1,
            )
            
            seed = gr.Slider(
                label="Tracking number (seed)",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            

            cases_strength = gr.Slider(
                label="Brand strenght",
                minimum=0.0,
                maximum=1.0,
                step=0.05,
                value=0.5,
            )

            cases_scope = gr.Slider(
                label="Brand scope",
                minimum=1,
                maximum=10,
                step=1,
                value=1,
            )
            

            with gr.Row():
                
                
                num_inference_steps = gr.Slider(
                    label="Detail steps",
                    minimum=35,
                    maximum=75,
                    step=1,
                    value=50, #Replace with defaults that work for your model
                )
        
        gr.Examples(
            examples = examples,
            inputs = [prompt]
        )
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn = ourhood_inference,
        inputs = [prompt, num_inference_steps, perspective, seed,cases_strength,cases_scope],
        outputs = [result]
    )

demo.queue().launch()