Update app.py
Browse files
app.py
CHANGED
@@ -14,7 +14,12 @@ You can also use 🐣e5-mistral🛌🏻 by cloning this space. 🧬🔬🔍 Simp
|
|
14 |
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [Poly](https://github.com/tonic-ai/poly)
|
15 |
"""
|
16 |
|
17 |
-
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
|
20 |
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
|
@@ -28,16 +33,10 @@ def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tenso
|
|
28 |
def get_detailed_instruct(task_description: str, query: str) -> str:
|
29 |
return f'Instruct: {task_description}\nQuery: {query}'
|
30 |
|
31 |
-
|
32 |
@spaces.GPU
|
33 |
def compute_embeddings(*input_texts):
|
34 |
-
|
35 |
-
torch.backends.cudnn.allow_tf32 = True
|
36 |
-
torch.backends.cudnn.benchmark = True
|
37 |
-
tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-mistral-7b-instruct')
|
38 |
-
model = AutoModel.from_pretrained('intfloat/e5-mistral-7b-instruct')
|
39 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
40 |
-
model.to(device)
|
41 |
max_length = 4096
|
42 |
task = 'Given a web search query, retrieve relevant passages that answer the query'
|
43 |
|
|
|
14 |
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [Poly](https://github.com/tonic-ai/poly)
|
15 |
"""
|
16 |
|
17 |
+
# os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:50'
|
18 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
+
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-mistral-7b-instruct')
|
21 |
+
model = AutoModel.from_pretrained('intfloat/e5-mistral-7b-instruct')
|
22 |
+
model.to(device)
|
23 |
|
24 |
def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
|
25 |
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
|
|
|
33 |
def get_detailed_instruct(task_description: str, query: str) -> str:
|
34 |
return f'Instruct: {task_description}\nQuery: {query}'
|
35 |
|
36 |
+
|
37 |
@spaces.GPU
|
38 |
def compute_embeddings(*input_texts):
|
39 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
max_length = 4096
|
41 |
task = 'Given a web search query, retrieve relevant passages that answer the query'
|
42 |
|