|
import spaces |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import Tensor |
|
from transformers import AutoTokenizer, AutoModel |
|
import gradio as gr |
|
import os |
|
|
|
title = """ |
|
# 👋🏻Welcome to 🙋🏻♂️Tonic's 🐣e5-mistral🛌🏻Embeddings """ |
|
description = """ |
|
You can use this Space to test out the current model [intfloat/e5-mistral-7b-instruct](https://huggingface.co/intfloat/e5-mistral-7b-instruct). e5mistral has a larger context window, a different prompting/return mechanism and generally better results than other embedding models. |
|
You can also use 🐣e5-mistral🛌🏻 by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/e5?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3> |
|
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [Poly](https://github.com/tonic-ai/poly) |
|
""" |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-mistral-7b-instruct') |
|
model = AutoModel.from_pretrained('intfloat/e5-mistral-7b-instruct', torch_dtype=torch.float16, device_map=device) |
|
|
|
|
|
|
|
def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor: |
|
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0]) |
|
if left_padding: |
|
return last_hidden_states[:, -1] |
|
else: |
|
sequence_lengths = attention_mask.sum(dim=1) - 1 |
|
batch_size = last_hidden_states.shape[0] |
|
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths] |
|
|
|
def get_detailed_instruct(task_description: str, query: str) -> str: |
|
return f'Instruct: {task_description}\nQuery: {query}' |
|
|
|
|
|
@spaces.GPU |
|
def compute_embeddings(*input_texts): |
|
|
|
max_length = 2042 |
|
task = 'Given a web search query, retrieve relevant passages that answer the query' |
|
|
|
processed_texts = [get_detailed_instruct(task, text) for text in input_texts] |
|
batch_dict = tokenizer(processed_texts, max_length=max_length - 1, return_attention_mask=False, padding=False, truncation=True) |
|
batch_dict['input_ids'] = [input_ids + [tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']] |
|
batch_dict = tokenizer.pad(batch_dict, padding=True, return_attention_mask=True, return_tensors='pt') |
|
batch_dict = {k: v.to(device) for k, v in batch_dict.items()} |
|
outputs = model(**batch_dict) |
|
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask']) |
|
embeddings = F.normalize(embeddings, p=2, dim=1) |
|
embeddings_list = embeddings.detach().cpu().numpy().tolist() |
|
return embeddings_list |
|
|
|
def app_interface(): |
|
with gr.Blocks() as demo: |
|
gr.Markdown(title) |
|
gr.Markdown(description) |
|
|
|
input_text_boxes = [gr.Textbox(label=f"Input Text {i+1}") for i in range(4)] |
|
|
|
compute_button = gr.Button("Compute Embeddings") |
|
|
|
output_display = gr.Dataframe(headers=["Embedding Value"], datatype=["number"]) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
for text_box in input_text_boxes: |
|
text_box |
|
with gr.Column(): |
|
compute_button |
|
output_display |
|
|
|
compute_button.click( |
|
fn=compute_embeddings, |
|
inputs=input_text_boxes, |
|
outputs=output_display |
|
) |
|
|
|
return demo |
|
|
|
|
|
app_interface().launch() |