|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer |
|
import torch |
|
from threading import Thread |
|
import gradio as gr |
|
import spaces |
|
import re |
|
from peft import PeftModel |
|
|
|
|
|
try: |
|
base_model = AutoModelForCausalLM.from_pretrained( |
|
"openai/gpt-oss-20b", |
|
torch_dtype="auto", |
|
device_map="auto", |
|
attn_implementation="kernels-community/vllm-flash-attention3" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained("openai/gpt-oss-20b") |
|
|
|
|
|
try: |
|
model = PeftModel.from_pretrained(base_model, "Tonic/gpt-oss-20b-multilingual-reasoner") |
|
print("✅ LoRA model loaded successfully!") |
|
except Exception as lora_error: |
|
print(f"⚠️ LoRA adapter failed to load: {lora_error}") |
|
print("🔄 Falling back to base model...") |
|
model = base_model |
|
|
|
except Exception as e: |
|
print(f"❌ Error loading model: {e}") |
|
raise e |
|
|
|
def format_conversation_history(chat_history): |
|
messages = [] |
|
for item in chat_history: |
|
role = item["role"] |
|
content = item["content"] |
|
if isinstance(content, list): |
|
content = content[0]["text"] if content and "text" in content[0] else str(content) |
|
messages.append({"role": role, "content": content}) |
|
return messages |
|
|
|
def create_harmony_prompt(messages, reasoning_level="medium"): |
|
""" |
|
Create a proper Harmony format prompt for GPT-OSS-20B |
|
Based on the Harmony format from https://github.com/openai/harmony |
|
""" |
|
|
|
system_content = f"""You are ChatGPT, a large language model trained by OpenAI. |
|
Knowledge cutoff: 2024-06 |
|
Current date: 2025-01-28 |
|
|
|
Reasoning: {reasoning_level} |
|
|
|
# Valid channels: analysis, commentary, final. Channel must be included for every message.""" |
|
|
|
|
|
prompt_parts = [] |
|
|
|
|
|
prompt_parts.append(f"<|start|>system<|message|>{system_content}<|end|>") |
|
|
|
|
|
for message in messages: |
|
role = message["role"] |
|
content = message["content"] |
|
|
|
if role == "system": |
|
|
|
continue |
|
elif role == "user": |
|
prompt_parts.append(f"<|start|>user<|message|>{content}<|end|>") |
|
elif role == "assistant": |
|
prompt_parts.append(f"<|start|>assistant<|message|>{content}<|end|>") |
|
|
|
|
|
prompt_parts.append("<|start|>assistant") |
|
|
|
return "\n".join(prompt_parts) |
|
|
|
@spaces.GPU(duration=60) |
|
def generate_response(input_data, chat_history, max_new_tokens, system_prompt, temperature, top_p, top_k, repetition_penalty): |
|
new_message = {"role": "user", "content": input_data} |
|
system_message = [{"role": "system", "content": system_prompt}] if system_prompt else [] |
|
processed_history = format_conversation_history(chat_history) |
|
messages = system_message + processed_history + [new_message] |
|
|
|
|
|
reasoning_level = "medium" |
|
if "reasoning:" in system_prompt.lower(): |
|
if "high" in system_prompt.lower(): |
|
reasoning_level = "high" |
|
elif "low" in system_prompt.lower(): |
|
reasoning_level = "low" |
|
|
|
|
|
prompt = create_harmony_prompt(messages, reasoning_level) |
|
|
|
|
|
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
|
|
|
|
generation_kwargs = { |
|
"max_new_tokens": max_new_tokens, |
|
"do_sample": True, |
|
"temperature": temperature, |
|
"top_p": top_p, |
|
"top_k": top_k, |
|
"repetition_penalty": repetition_penalty, |
|
"pad_token_id": tokenizer.eos_token_id, |
|
"streamer": streamer, |
|
"use_cache": True |
|
} |
|
|
|
|
|
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) |
|
|
|
|
|
thread = Thread(target=model.generate, kwargs={**inputs, **generation_kwargs}) |
|
thread.start() |
|
|
|
|
|
current_channel = None |
|
current_content = "" |
|
thinking = "" |
|
final = "" |
|
|
|
for chunk in streamer: |
|
current_content += chunk |
|
|
|
|
|
|
|
if "<|channel|>" in current_content: |
|
|
|
parts = current_content.split("<|channel|>") |
|
if len(parts) >= 2: |
|
channel_part = parts[1] |
|
if channel_part.startswith("analysis"): |
|
current_channel = "analysis" |
|
content_start = channel_part.find("<|message|>") |
|
if content_start != -1: |
|
content = channel_part[content_start + 10:] |
|
thinking += content |
|
elif channel_part.startswith("commentary"): |
|
current_channel = "commentary" |
|
content_start = channel_part.find("<|message|>") |
|
if content_start != -1: |
|
content = channel_part[content_start + 10:] |
|
thinking += content |
|
elif channel_part.startswith("final"): |
|
current_channel = "final" |
|
content_start = channel_part.find("<|message|>") |
|
if content_start != -1: |
|
content = channel_part[content_start + 10:] |
|
final += content |
|
|
|
|
|
clean_thinking = re.sub(r'^analysis\s*', '', thinking).strip() |
|
clean_final = final.strip() |
|
|
|
|
|
if clean_thinking or clean_final: |
|
formatted = f"<details open><summary>Click to view Thinking Process</summary>\n\n{clean_thinking}\n\n</details>\n\n{clean_final}" |
|
yield formatted |
|
|
|
demo = gr.ChatInterface( |
|
fn=generate_response, |
|
additional_inputs=[ |
|
gr.Slider(label="Max new tokens", minimum=64, maximum=4096, step=1, value=2048), |
|
gr.Textbox( |
|
label="System Prompt", |
|
value="You are a helpful assistant. Reasoning: medium", |
|
lines=4, |
|
placeholder="Change system prompt" |
|
), |
|
gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7), |
|
gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9), |
|
gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=50), |
|
gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.0) |
|
], |
|
examples=[ |
|
[{"text": "Explain Newton laws clearly and concisely"}], |
|
[{"text": "Write a Python function to calculate the Fibonacci sequence"}], |
|
[{"text": "What are the benefits of open weight AI models"}], |
|
], |
|
cache_examples=False, |
|
type="messages", |
|
description=""" |
|
# 🙋🏻♂️Welcome to 🌟Tonic's gpt-oss-20b Multilingual Reasoner Demo ! |
|
Wait couple of seconds initially. You can adjust reasoning level in the system prompt like "Reasoning: high. |
|
This version uses the proper Harmony format for better generation quality. |
|
""", |
|
fill_height=True, |
|
textbox=gr.Textbox( |
|
label="Query Input", |
|
placeholder="Type your prompt" |
|
), |
|
stop_btn="Stop Generation", |
|
multimodal=False, |
|
theme=gr.themes.Soft() |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(share=True) |