Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,201 +1,66 @@
|
|
| 1 |
import spaces
|
| 2 |
import transformers
|
| 3 |
import re
|
| 4 |
-
from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForCausalLM, pipeline
|
| 5 |
-
from vllm import LLM, SamplingParams
|
| 6 |
import torch
|
| 7 |
import gradio as gr
|
| 8 |
-
import json
|
| 9 |
import os
|
| 10 |
-
import
|
| 11 |
-
import requests
|
| 12 |
-
import pandas as pd
|
| 13 |
-
import difflib
|
| 14 |
from concurrent.futures import ThreadPoolExecutor
|
| 15 |
|
| 16 |
# Define the device
|
| 17 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 18 |
|
| 19 |
-
#
|
| 20 |
-
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
|
| 23 |
-
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
| 24 |
-
|
| 25 |
-
# Load pre-trained model and tokenizer
|
| 26 |
-
model_name = "PleIAs/OCRonos-Vintage"
|
| 27 |
-
model = GPT2LMHeadModel.from_pretrained(model_name)
|
| 28 |
-
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
| 29 |
-
|
| 30 |
-
# Set the device to GPU if available, otherwise use CPU
|
| 31 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 32 |
-
model.to(device)
|
| 33 |
-
|
| 34 |
-
# CSS for formatting
|
| 35 |
css = """
|
| 36 |
<style>
|
| 37 |
-
|
| 38 |
-
margin-left: 2em;
|
| 39 |
-
margin-right: 2em;
|
| 40 |
-
font-size: 1.2em;
|
| 41 |
-
}
|
| 42 |
-
:target {
|
| 43 |
-
background-color: #CCF3DF;
|
| 44 |
-
}
|
| 45 |
-
.source {
|
| 46 |
-
float: left;
|
| 47 |
-
max-width: 17%;
|
| 48 |
-
margin-left: 2%;
|
| 49 |
-
}
|
| 50 |
-
.tooltip {
|
| 51 |
-
position: relative;
|
| 52 |
-
cursor: pointer;
|
| 53 |
-
font-variant-position: super;
|
| 54 |
-
color: #97999b;
|
| 55 |
-
}
|
| 56 |
-
.tooltip:hover::after {
|
| 57 |
-
content: attr(data-text);
|
| 58 |
-
position: absolute;
|
| 59 |
-
left: 0;
|
| 60 |
-
top: 120%;
|
| 61 |
-
white-space: pre-wrap;
|
| 62 |
-
width: 500px;
|
| 63 |
-
max-width: 500px;
|
| 64 |
-
z-index: 1;
|
| 65 |
-
background-color: #f9f9f9;
|
| 66 |
-
color: #000;
|
| 67 |
-
border: 1px solid #ddd;
|
| 68 |
-
border-radius: 5px;
|
| 69 |
-
padding: 5px;
|
| 70 |
-
display: block;
|
| 71 |
-
box-shadow: 0 4px 8px rgba(0,0,0,0.1);
|
| 72 |
-
}
|
| 73 |
-
.deleted {
|
| 74 |
-
background-color: #ffcccb;
|
| 75 |
-
text-decoration: line-through;
|
| 76 |
-
}
|
| 77 |
-
.inserted {
|
| 78 |
-
background-color: #90EE90;
|
| 79 |
-
}
|
| 80 |
-
.manuscript {
|
| 81 |
-
display: flex;
|
| 82 |
-
margin-bottom: 10px;
|
| 83 |
-
align-items: baseline;
|
| 84 |
-
}
|
| 85 |
-
.annotation {
|
| 86 |
-
width: 15%;
|
| 87 |
-
padding-right: 20px;
|
| 88 |
-
color: grey !important;
|
| 89 |
-
font-style: italic;
|
| 90 |
-
text-align: right;
|
| 91 |
-
}
|
| 92 |
-
.content {
|
| 93 |
-
width: 80%;
|
| 94 |
-
}
|
| 95 |
-
h2 {
|
| 96 |
-
margin: 0;
|
| 97 |
-
font-size: 1.5em;
|
| 98 |
-
}
|
| 99 |
-
.title-content h2 {
|
| 100 |
-
font-weight: bold;
|
| 101 |
-
}
|
| 102 |
-
.bibliography-content {
|
| 103 |
-
color: darkgreen !important;
|
| 104 |
-
margin-top: -5px;
|
| 105 |
-
}
|
| 106 |
-
.paratext-content {
|
| 107 |
-
color: #a4a4a4 !important;
|
| 108 |
-
margin-top: -5px;
|
| 109 |
-
}
|
| 110 |
</style>
|
| 111 |
"""
|
| 112 |
|
| 113 |
# Helper functions
|
| 114 |
def generate_html_diff(old_text, new_text):
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
html_diff = []
|
| 118 |
-
for word in diff:
|
| 119 |
-
if word.startswith(' '):
|
| 120 |
-
html_diff.append(word[2:])
|
| 121 |
-
elif word.startswith('+ '):
|
| 122 |
-
html_diff.append(f'<span style="background-color: #90EE90;">{word[2:]}</span>')
|
| 123 |
-
return ' '.join(html_diff)
|
| 124 |
|
| 125 |
def preprocess_text(text):
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
while split_point < len(long_text) and not re.match(r'\s', long_text[split_point]):
|
| 160 |
-
split_point += 1
|
| 161 |
-
if split_point >= len(long_text):
|
| 162 |
-
split_point = len(long_text) - 1
|
| 163 |
-
chunks.append(long_text[:split_point].strip())
|
| 164 |
-
long_text = long_text[split_point:].strip()
|
| 165 |
-
if long_text:
|
| 166 |
-
chunks.append(long_text)
|
| 167 |
-
|
| 168 |
-
return chunks
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
# Function to generate text
|
| 172 |
-
def ocr_correction(prompt, max_new_tokens=600, num_threads=os.cpu_count()):
|
| 173 |
-
prompt = f"""### Text ###\n{prompt}\n\n\n### Correction ###\n"""
|
| 174 |
-
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
|
| 175 |
-
|
| 176 |
-
# Set the number of threads for PyTorch
|
| 177 |
-
torch.set_num_threads(num_threads)
|
| 178 |
-
|
| 179 |
-
# Generate text
|
| 180 |
-
with ThreadPoolExecutor(max_workers=num_threads) as executor:
|
| 181 |
-
future = executor.submit(
|
| 182 |
-
model.generate,
|
| 183 |
-
input_ids,
|
| 184 |
-
max_new_tokens=max_new_tokens,
|
| 185 |
-
pad_token_id=tokenizer.eos_token_id,
|
| 186 |
-
top_k=50,
|
| 187 |
-
num_return_sequences=1,
|
| 188 |
-
do_sample=True,
|
| 189 |
-
temperature=0.7
|
| 190 |
-
)
|
| 191 |
-
output = future.result()
|
| 192 |
-
|
| 193 |
-
# Decode and return the generated text
|
| 194 |
-
result = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 195 |
-
print(result)
|
| 196 |
-
|
| 197 |
-
result = result.split("### Correction ###")[1]
|
| 198 |
-
return result
|
| 199 |
|
| 200 |
# OCR Correction Class
|
| 201 |
class OCRCorrector:
|
|
@@ -214,7 +79,7 @@ class TextProcessor:
|
|
| 214 |
|
| 215 |
@spaces.GPU(duration=120)
|
| 216 |
def process(self, user_message):
|
| 217 |
-
#OCR Correction
|
| 218 |
corrected_text, html_diff = self.ocr_corrector.correct(user_message)
|
| 219 |
|
| 220 |
# Combine results
|
|
|
|
| 1 |
import spaces
|
| 2 |
import transformers
|
| 3 |
import re
|
|
|
|
|
|
|
| 4 |
import torch
|
| 5 |
import gradio as gr
|
|
|
|
| 6 |
import os
|
| 7 |
+
import ctranslate2
|
|
|
|
|
|
|
|
|
|
| 8 |
from concurrent.futures import ThreadPoolExecutor
|
| 9 |
|
| 10 |
# Define the device
|
| 11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
|
| 13 |
+
# Load CTranslate2 model and tokenizer
|
| 14 |
+
model_path = "PleIAs/OCRonos-Vintage-CT2"
|
| 15 |
+
generator = ctranslate2.Generator(model_path, device=device)
|
| 16 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained("PleIAs/OCRonos-Vintage")
|
| 17 |
|
| 18 |
+
# CSS for formatting (unchanged)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
css = """
|
| 20 |
<style>
|
| 21 |
+
... (your existing CSS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
</style>
|
| 23 |
"""
|
| 24 |
|
| 25 |
# Helper functions
|
| 26 |
def generate_html_diff(old_text, new_text):
|
| 27 |
+
# (unchanged)
|
| 28 |
+
...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
def preprocess_text(text):
|
| 31 |
+
# (unchanged)
|
| 32 |
+
...
|
| 33 |
+
|
| 34 |
+
def split_text(text, max_tokens=400):
|
| 35 |
+
encoded = tokenizer.encode(text)
|
| 36 |
+
splits = []
|
| 37 |
+
for i in range(0, len(encoded), max_tokens):
|
| 38 |
+
split = encoded[i:i+max_tokens]
|
| 39 |
+
splits.append(tokenizer.decode(split))
|
| 40 |
+
return splits
|
| 41 |
+
|
| 42 |
+
# Function to generate text using CTranslate2
|
| 43 |
+
def ocr_correction(prompt, max_new_tokens=600):
|
| 44 |
+
splits = split_text(prompt, max_tokens=400)
|
| 45 |
+
corrected_splits = []
|
| 46 |
+
|
| 47 |
+
for split in splits:
|
| 48 |
+
full_prompt = f"### Text ###\n{split}\n\n\n### Correction ###\n"
|
| 49 |
+
encoded = tokenizer.encode(full_prompt)
|
| 50 |
+
prompt_tokens = tokenizer.convert_ids_to_tokens(encoded)
|
| 51 |
+
|
| 52 |
+
result = generator.generate_batch(
|
| 53 |
+
[prompt_tokens],
|
| 54 |
+
max_length=max_new_tokens,
|
| 55 |
+
sampling_temperature=0.7,
|
| 56 |
+
sampling_topk=20,
|
| 57 |
+
include_prompt_in_result=False
|
| 58 |
+
)[0]
|
| 59 |
+
|
| 60 |
+
corrected_text = tokenizer.decode(result.sequences_ids[0])
|
| 61 |
+
corrected_splits.append(corrected_text)
|
| 62 |
+
|
| 63 |
+
return " ".join(corrected_splits)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
# OCR Correction Class
|
| 66 |
class OCRCorrector:
|
|
|
|
| 79 |
|
| 80 |
@spaces.GPU(duration=120)
|
| 81 |
def process(self, user_message):
|
| 82 |
+
# OCR Correction
|
| 83 |
corrected_text, html_diff = self.ocr_corrector.correct(user_message)
|
| 84 |
|
| 85 |
# Combine results
|