import gc import cv2 import insightface import torch import torch.nn as nn from basicsr.utils import img2tensor, tensor2img from diffusers import ( DPMSolverMultistepScheduler, StableDiffusionXLPipeline, AutoPipelineForText2Image, UNet2DConditionModel, ) from facexlib.parsing import init_parsing_model from facexlib.utils.face_restoration_helper import FaceRestoreHelper from huggingface_hub import hf_hub_download, snapshot_download from insightface.app import FaceAnalysis from safetensors.torch import load_file from torchvision.transforms import InterpolationMode from torchvision.transforms.functional import normalize, resize from eva_clip import create_model_and_transforms from eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD from pulid.encoders import IDEncoder from pulid.utils import is_torch2_available if is_torch2_available(): from pulid.attention_processor import AttnProcessor2_0 as AttnProcessor from pulid.attention_processor import IDAttnProcessor2_0 as IDAttnProcessor else: from pulid.attention_processor import AttnProcessor, IDAttnProcessor class PuLIDPipeline: def __init__(self, *args, **kwargs): super().__init__() self.device = 'cuda' # SG161222/RealVisXL_V5.0_Lightning, lykon/dreamshaper-xl-lightning self.pipe = AutoPipelineForText2Image.from_pretrained('lykon/dreamshaper-xl-lightning', torch_dtype=torch.float16, variant="fp16") self.hack_unet_attn_layers(self.pipe.unet) self.pipe = self.pipe.to(self.device) self.pipe.watermark = None # scheduler self.pipe.scheduler = DPMSolverMultistepScheduler.from_config( self.pipe.scheduler.config, timestep_spacing="trailing" ) # ID adapters self.id_adapter = IDEncoder().to(self.device) # preprocessors # face align and parsing self.face_helper = FaceRestoreHelper( upscale_factor=1, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png', device=self.device, ) self.face_helper.face_parse = None self.face_helper.face_parse = init_parsing_model(model_name='bisenet', device=self.device) # clip-vit backbone model, _, _ = create_model_and_transforms('EVA02-CLIP-L-14-336', 'eva_clip', force_custom_clip=True) model = model.visual self.clip_vision_model = model.to(self.device) eva_transform_mean = getattr(self.clip_vision_model, 'image_mean', OPENAI_DATASET_MEAN) eva_transform_std = getattr(self.clip_vision_model, 'image_std', OPENAI_DATASET_STD) if not isinstance(eva_transform_mean, (list, tuple)): eva_transform_mean = (eva_transform_mean,) * 3 if not isinstance(eva_transform_std, (list, tuple)): eva_transform_std = (eva_transform_std,) * 3 self.eva_transform_mean = eva_transform_mean self.eva_transform_std = eva_transform_std # antelopev2 snapshot_download('DIAMONIK7777/antelopev2', local_dir='models/antelopev2') self.app = FaceAnalysis( name='antelopev2', root='.', providers=['CPUExecutionProvider'] ) self.app.prepare(ctx_id=0, det_size=(640, 640)) self.handler_ante = insightface.model_zoo.get_model('models/antelopev2/glintr100.onnx', providers=['CPUExecutionProvider']) self.handler_ante.prepare(ctx_id=0) print('load done') gc.collect() torch.cuda.empty_cache() self.load_pretrain() # other configs self.debug_img_list = [] def hack_unet_attn_layers(self, unet): id_adapter_attn_procs = {} for name, _ in unet.attn_processors.items(): cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim if name.startswith("mid_block"): hidden_size = unet.config.block_out_channels[-1] elif name.startswith("up_blocks"): block_id = int(name[len("up_blocks.")]) hidden_size = list(reversed(unet.config.block_out_channels))[block_id] elif name.startswith("down_blocks"): block_id = int(name[len("down_blocks.")]) hidden_size = unet.config.block_out_channels[block_id] if cross_attention_dim is not None: id_adapter_attn_procs[name] = IDAttnProcessor( hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, ).to(unet.device) else: id_adapter_attn_procs[name] = AttnProcessor() unet.set_attn_processor(id_adapter_attn_procs) self.id_adapter_attn_layers = nn.ModuleList(unet.attn_processors.values()) def load_pretrain(self): hf_hub_download('guozinan/PuLID', 'pulid_v1.bin', local_dir='models') ckpt_path = 'models/pulid_v1.bin' state_dict = torch.load(ckpt_path, map_location='cpu') state_dict_dict = {} for k, v in state_dict.items(): module = k.split('.')[0] state_dict_dict.setdefault(module, {}) new_k = k[len(module) + 1 :] state_dict_dict[module][new_k] = v for module in state_dict_dict: print(f'loading from {module}') getattr(self, module).load_state_dict(state_dict_dict[module], strict=True) def to_gray(self, img): x = 0.299 * img[:, 0:1] + 0.587 * img[:, 1:2] + 0.114 * img[:, 2:3] x = x.repeat(1, 3, 1, 1) return x def get_id_embedding(self, image): """ Args: image: numpy rgb image, range [0, 255] """ self.face_helper.clean_all() image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # get antelopev2 embedding face_info = self.app.get(image_bgr) if len(face_info) > 0: face_info = sorted(face_info, key=lambda x: (x['bbox'][2] - x['bbox'][0]) * x['bbox'][3] - x['bbox'][1])[ -1 ] # only use the maximum face id_ante_embedding = face_info['embedding'] self.debug_img_list.append( image[ int(face_info['bbox'][1]) : int(face_info['bbox'][3]), int(face_info['bbox'][0]) : int(face_info['bbox'][2]), ] ) else: id_ante_embedding = None # using facexlib to detect and align face self.face_helper.read_image(image_bgr) self.face_helper.get_face_landmarks_5(only_center_face=True) self.face_helper.align_warp_face() if len(self.face_helper.cropped_faces) == 0: raise RuntimeError('facexlib align face fail') align_face = self.face_helper.cropped_faces[0] # incase insightface didn't detect face if id_ante_embedding is None: print('fail to detect face using insightface, extract embedding on align face') id_ante_embedding = self.handler_ante.get_feat(align_face) id_ante_embedding = torch.from_numpy(id_ante_embedding).to(self.device) if id_ante_embedding.ndim == 1: id_ante_embedding = id_ante_embedding.unsqueeze(0) # parsing input = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0 input = input.to(self.device) parsing_out = self.face_helper.face_parse(normalize(input, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0] parsing_out = parsing_out.argmax(dim=1, keepdim=True) bg_label = [0, 16, 18, 7, 8, 9, 14, 15] bg = sum(parsing_out == i for i in bg_label).bool() white_image = torch.ones_like(input) # only keep the face features face_features_image = torch.where(bg, white_image, self.to_gray(input)) self.debug_img_list.append(tensor2img(face_features_image, rgb2bgr=False)) # transform img before sending to eva-clip-vit face_features_image = resize(face_features_image, self.clip_vision_model.image_size, InterpolationMode.BICUBIC) face_features_image = normalize(face_features_image, self.eva_transform_mean, self.eva_transform_std) id_cond_vit, id_vit_hidden = self.clip_vision_model( face_features_image, return_all_features=False, return_hidden=True, shuffle=False ) id_cond_vit_norm = torch.norm(id_cond_vit, 2, 1, True) id_cond_vit = torch.div(id_cond_vit, id_cond_vit_norm) id_cond = torch.cat([id_ante_embedding, id_cond_vit], dim=-1) id_uncond = torch.zeros_like(id_cond) id_vit_hidden_uncond = [] for layer_idx in range(0, len(id_vit_hidden)): id_vit_hidden_uncond.append(torch.zeros_like(id_vit_hidden[layer_idx])) id_embedding = self.id_adapter(id_cond, id_vit_hidden) uncond_id_embedding = self.id_adapter(id_uncond, id_vit_hidden_uncond) # return id_embedding return torch.cat((uncond_id_embedding, id_embedding), dim=0) def inference(self, prompt, size, prompt_n='', image_embedding=None, id_scale=1.0, guidance_scale=1.2, steps=4): images = self.pipe( prompt=prompt, negative_prompt=prompt_n, num_images_per_prompt=size[0], height=size[1], width=size[2], num_inference_steps=steps, guidance_scale=guidance_scale, cross_attention_kwargs={'id_embedding': image_embedding, 'id_scale': id_scale}, ).images return images