--- title: Audio-Transcriptor sdk: gradio emoji: ⚡ colorFrom: green colorTo: red pinned: false short_description: Audio transcription with speaker diarization using Whisper. sdk_version: 5.3.0 --- # Audio Transcription and Diarization Tool ## Overview This project provides a robust set of tools for transcribing audio files using the Whisper model and performing speaker diarization with PyAnnote. Users can process audio files, record audio, and save transcriptions with speaker identification. ## Table of Contents - [Features](#features) - [Requirements](#requirements) - [Setup](#setup) - [Usage](#usage) - [Basic Example](#basic-example) - [Audio Processing Example](#audio-processing-example) - [Transcribing an Existing Audio File or Recording](#transcribing-an-existing-audio-file-or-recording) - [Key Components](#key-components) - [Transcriptor](#transcriptor) - [AudioProcessor](#audioprocessor) - [AudioRecording](#audiorecording) - [Contributing](#contributing) - [Acknowledgments](#acknowledgments) ## Features - **Transcription**: Convert audio files in various formats to text (automatically converts to WAV). - **Speaker Diarization**: Identify different speakers in the audio. - **Speaker Retrieval**: Name speakers during transcription. - **Audio Recording**: Record audio directly from a microphone. - **Audio Preprocessing**: Includes resampling, format conversion, and audio enhancement. - **Multiple Model Support**: Choose from various Whisper model sizes. ## Supported Whisper Models This tool supports various Whisper model sizes, allowing you to balance accuracy and computational resources: - **`tiny`**: Fastest, lowest accuracy - **`base`**: Fast, good accuracy - **`small`**: Balanced speed and accuracy - **`medium`**: High accuracy, slower - **`large`**: High accuracy, resource-intensive - **`large-v1`**: Improved large model - **`large-v2`**: Further improved large model - **`large-v3`**: Latest and most accurate - **`large-v3-turbo`**: Optimized for faster processing Specify the model size when initializing the Transcriptor: ```python transcriptor = Transcriptor(model_size="base") ``` The default model size is "base" if not specified. ## Requirements To run this project, you need Python 3.7+ and the following packages: ```plaintext - openai-whisper - pyannote.audio - librosa - tqdm - python-dotenv - termcolor - pydub - SpeechRecognition - pyaudio - tabulate - soundfile - torch - numpy - transformers - gradio ``` Install the required packages using: ```bash pip install -r requirements.txt ``` ## Setup 1. **Clone the repository**: ```bash git clone https://github.com/your-username/audio-transcription-tool.git cd audio-transcription-tool ``` 2. **Install the required packages**: ```bash pip install -r requirements.txt ``` 3. **Set up your environment variables**: - Create a `.env` file in the root directory. - Add your Hugging Face token: ```plaintext HF_TOKEN=your_hugging_face_token_here ``` ## Usage ### Basic Example Here's how to use the Transcriptor class to transcribe an audio file: ```python from pyscript import Transcriptor # Initialize the Transcriptor transcriptor = Transcriptor() # Transcribe an audio file transcription = transcriptor.transcribe_audio("/path/to/audio") # Interactively name speakers transcription.get_name_speakers() # Save the transcription transcription.save() ``` ### Audio Processing Example Use the AudioProcessor class to preprocess your audio files: ```python from pyscript import AudioProcessor # Load an audio file audio = AudioProcessor("/path/to/audio.mp3") # Display audio details audio.display_details() # Convert to WAV format and resample to 16000 Hz audio.convert_to_wav() # Display updated audio details audio.display_changes() ``` ### Transcribing an Existing Audio File or Recording To transcribe an audio file or record and transcribe audio, use the demo application provided in `demo.py`: ```bash python demo.py ``` ## Key Components ### Transcriptor The `Transcriptor` class (in `pyscript/transcriptor.py`) is the core of the transcription process. It handles: - Loading the Whisper model - Setting up the diarization pipeline - Processing audio files - Performing transcription and diarization ### AudioProcessor The `AudioProcessor` class (in `pyscript/audio_processing.py`) manages audio file preprocessing, including: - Loading audio files - Resampling - Converting to WAV format - Displaying audio file details and changes - Audio enhancement (noise reduction, voice enhancement, volume boost) ### AudioRecording The `audio_recording.py` module provides functions for recording audio from a microphone, checking input devices, and saving audio files. ## Contributing Contributions are welcome! Please follow these steps: 1. Fork the repository 2. Create a new branch: `git checkout -b feature-branch-name` 3. Make your changes and commit them: `git commit -m 'Add some feature'` 4. Push to the branch: `git push origin feature-branch-name` 5. Submit a pull request ## Acknowledgments - OpenAI for the Whisper model - PyAnnote for the speaker diarization pipeline - All contributors and users of this project