File size: 9,309 Bytes
3cdeba6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import os
import librosa
import numpy as np
from tabulate import tabulate
import soundfile as sf
import scipy.ndimage
import itertools
from tqdm import tqdm
import torch
import torchaudio

class AudioProcessor:

    def __init__(self, audio_file):
         self.path = audio_file
         self.name = os.path.splitext(os.path.basename(audio_file))[0]
         self.format = os.path.splitext(os.path.basename(audio_file))[1]
         self.duration = librosa.get_duration(path=audio_file)
         self.sample_rate = librosa.get_samplerate(audio_file)
         self.changes = []
         self.optimized_params = None
         self.load_details()

    # File information methods
    def load_details(self):
        """Save the attributes of the audio file."""
        data = [
            ["File Name", self.name],
            ["File Format", self.format],
            ["Duration", f"{self.duration} seconds"],
            ["Sample Rate", f"{self.sample_rate} Hz"]
        ]
        table = tabulate(data, headers=["Attribute", "Value"], tablefmt="outline")
        self.changes.append(table)
        return table
    
    def display_details(self):
        """Display the details of the audio file."""
        print(self.changes[-1])

    def display_changes(self):
        """Display the changes made to the audio file side by side."""
        self._clean_duplicates_changes()
        if len(self.changes) == 1:
            self.display_details()
        else:
            table1 = self.changes[0].split('\n')
            table2 = self.changes[-1].split('\n')

            combined_table = []
            for line1, line2 in zip(table1, table2):
                combined_table.append([line1, '===>', line2])

            print(tabulate(combined_table, tablefmt="plain"))

    def _clean_duplicates_changes(self):
        """Remove duplicate consecutive changes from the audio file."""
        self.changes = [change for i, change in enumerate(self.changes) 
                        if i == 0 or change != self.changes[i-1]]

    # Audio processing methods
    def load_as_array(self, sample_rate: int = 16000) -> np.ndarray:
        """

        Load an audio file and convert it into a NumPy array.



        Parameters

        ----------

        sample_rate : int, optional

            The sample rate to which the audio will be resampled (default is 16000 Hz).



        Returns

        -------

        np.ndarray

            A NumPy array containing the audio data.

        """
        try:
            audio, sr = librosa.load(self.path, sr=sample_rate)
            self.sample_rate = sr
            return audio
        except Exception as e:
            raise RuntimeError(f"Failed to load audio file: {e}")
        
    def resample_wav(self) -> str:
        output_path = os.path.join('resampled_files', f'{self.name}.wav')
        try:
            audio, sr = librosa.load(self.path)
            resampled_audio = librosa.resample(y=audio, orig_sr=sr, target_sr=16000)
            os.makedirs(os.path.dirname(output_path), exist_ok=True)
            sf.write(output_path, resampled_audio, 16000)
            self._update_file_info(output_path)
            return output_path
        except Exception as e:
            raise RuntimeError(f"Failed to resample audio file: {e}")
        
    def convert_to_wav(self):
        """

        Converts an audio file to WAV format.



        Returns

        -------

        str

            The path to the converted audio file.

        """        
        output_path = os.path.join('converted_files', f'{self.name}.wav')
        try:
            os.makedirs(os.path.dirname(output_path), exist_ok=True)
            audio, sr = librosa.load(self.path, sr=16000)
            sf.write(output_path, audio, 16000)
            self._update_file_info(output_path)
            return output_path
        except Exception as e:
            raise RuntimeError(f"Failed to convert audio file to WAV: {e}")

    def enhance_audio(self, noise_reduce_strength=0.5, voice_enhance_strength=1.5, volume_boost=1.2):
        """

        Enhance audio quality by reducing noise and clarifying voices.

        """
        try:
            y, sr = librosa.load(self.path, sr=16000)
            y_enhanced = self._enhance_audio_sample(y, noise_reduce_strength, voice_enhance_strength, volume_boost)

            output_path = os.path.join('enhanced_files', f'{self.name}_enhanced.wav')
            os.makedirs(os.path.dirname(output_path), exist_ok=True)
            sf.write(output_path, y_enhanced, sr)

            self._update_file_info(output_path)
            return output_path
        except Exception as e:
            raise RuntimeError(f"Failed to enhance audio: {e}")

    def _compute_spectral_contrast(self, y, sr, n_bands=6, fmin=200.0, quantile=0.02, hop_length=512):
        """

        Compute spectral contrast using librosa.

        Higher contrast generally indicates clearer speech separation from background.

        """
        S = np.abs(librosa.stft(y, hop_length=hop_length))
        contrast = librosa.feature.spectral_contrast(
            S=S, 
            sr=sr,
            n_bands=n_bands,
            fmin=fmin,
            quantile=quantile,
            hop_length=hop_length
        )
        return np.mean(contrast)

    def optimize_enhancement_parameters(self, step=0.25, max_iterations=50, sample_duration=30):
        """

        Find optimal parameters for audio enhancement using grid search on a sample.

        """
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        
        y_orig, sr = librosa.load(self.path, duration=sample_duration)
        y_orig_tensor = torch.tensor(y_orig, device=device)

        param_ranges = [
            np.arange(0.25, 1.5, step),  # noise_reduce_strength
            np.arange(1.0, 3.0, step),   # voice_enhance_strength
            np.arange(1.0, 2.0, step)    # volume_boost
        ]

        best_score = float('-inf')
        best_params = None

        total_iterations = min(max_iterations, len(list(itertools.product(*param_ranges))))

        for params in tqdm(itertools.islice(itertools.product(*param_ranges), max_iterations), 
                          total=total_iterations, 
                          desc="Searching for optimal parameters"):
            y_enhanced = self._enhance_audio_sample(y_orig, *params)
            y_enhanced_tensor = torch.tensor(y_enhanced, device=device)

            # Correlation between original and enhanced audio
            min_length = min(len(y_orig_tensor), len(y_enhanced_tensor))
            y_orig_trimmed = y_orig_tensor[:min_length]
            y_enhanced_trimmed = y_enhanced_tensor[:min_length]
            correlation = torch.corrcoef(torch.stack([y_orig_trimmed, y_enhanced_trimmed]))[0, 1].item()

            # Spectral contrast improvement
            contrast_orig = self._compute_spectral_contrast(y_orig, sr)
            contrast_enhanced = self._compute_spectral_contrast(y_enhanced, sr)
            contrast_improvement = contrast_enhanced - contrast_orig

            score = (0.3 * correlation) + (0.7 * contrast_improvement)

            if score > best_score:
                best_score = score
                best_params = params

        self.optimized_params = best_params
        return best_params

    def _enhance_audio_sample(self, y, noise_reduce_strength=0.5, voice_enhance_strength=1.5, volume_boost=1.2):
        """

        Enhance an audio sample by reducing noise and enhancing voice clarity.

        

        Parameters

        ----------

        y : np.ndarray

            Input audio signal

        noise_reduce_strength : float

            Strength of noise reduction (default: 0.5)

        voice_enhance_strength : float

            Strength of voice enhancement (default: 1.5)

        volume_boost : float

            Volume boost factor (default: 1.2)

        

        Returns

        -------

        np.ndarray

            Enhanced audio signal

        """
        # STFT
        S = librosa.stft(y, n_fft=2048)
        S_mag, S_phase = np.abs(S), np.angle(S)
        S_filtered = scipy.ndimage.median_filter(S_mag, size=(1, 31))
        
        # Noise reduction mask
        mask = np.clip((S_mag - S_filtered) / (S_mag + 1e-10), 0, 1) ** noise_reduce_strength
        S_denoised = S_mag * mask * np.exp(1j * S_phase)

        # Inverse STFT
        y_denoised = librosa.istft(S_denoised)

        # Harmonic-percussive separation and enhancement
        y_harmonic, y_percussive = librosa.effects.hpss(y_denoised)
        y_enhanced = (y_harmonic * voice_enhance_strength + y_percussive) * volume_boost

        return librosa.util.normalize(y_enhanced, norm=np.inf, threshold=1.0)

    # Helper method
    def _update_file_info(self, new_path):
        """Update file information after processing."""
        self.path = new_path
        self.sample_rate = librosa.get_samplerate(new_path)
        self.format = os.path.splitext(new_path)[1]
        self.duration = librosa.get_duration(path=new_path)
        self.load_details()