import torch import numpy as np import pickle from typing import Optional import smplx from smplx.lbs import vertices2joints from smplx.utils import MANOOutput, to_tensor from smplx.vertex_ids import vertex_ids class MANO(smplx.MANOLayer): def __init__(self, *args, joint_regressor_extra: Optional[str] = None, **kwargs): """ Extension of the official MANO implementation to support more joints. Args: Same as MANOLayer. joint_regressor_extra (str): Path to extra joint regressor. """ super(MANO, self).__init__(*args, **kwargs) mano_to_openpose = [0, 13, 14, 15, 16, 1, 2, 3, 17, 4, 5, 6, 18, 10, 11, 12, 19, 7, 8, 9, 20] #2, 3, 5, 4, 1 if joint_regressor_extra is not None: self.register_buffer('joint_regressor_extra', torch.tensor(pickle.load(open(joint_regressor_extra, 'rb'), encoding='latin1'), dtype=torch.float32)) self.register_buffer('extra_joints_idxs', to_tensor(list(vertex_ids['mano'].values()), dtype=torch.long)) self.register_buffer('joint_map', torch.tensor(mano_to_openpose, dtype=torch.long)) def forward(self, *args, **kwargs) -> MANOOutput: """ Run forward pass. Same as MANO and also append an extra set of joints if joint_regressor_extra is specified. """ mano_output = super(MANO, self).forward(*args, **kwargs) extra_joints = torch.index_select(mano_output.vertices, 1, self.extra_joints_idxs) joints = torch.cat([mano_output.joints, extra_joints], dim=1) joints = joints[:, self.joint_map, :] if hasattr(self, 'joint_regressor_extra'): extra_joints = vertices2joints(self.joint_regressor_extra, mano_output.vertices) joints = torch.cat([joints, extra_joints], dim=1) mano_output.joints = joints return mano_output def query(self, hmr_output): batch_size = hmr_output['pred_rotmat'].shape[0] pred_rotmat = hmr_output['pred_rotmat'].reshape(batch_size, -1, 3, 3) pred_shape = hmr_output['pred_shape'].reshape(batch_size, 10) mano_output = self(global_orient=pred_rotmat[:, [0]], hand_pose = pred_rotmat[:, 1:], betas = pred_shape, pose2rot=False) return mano_output