Spaces:
Running
Running
import argparse | |
import sys | |
import os | |
import torch | |
sys.path.insert(0, os.path.dirname(__file__)) | |
import numpy as np | |
import joblib | |
from scripts.scripts_test_video.detect_track_video import detect_track_video | |
from scripts.scripts_test_video.hawor_video import hawor_motion_estimation, hawor_infiller | |
from scripts.scripts_test_video.hawor_slam import hawor_slam | |
from hawor.utils.process import get_mano_faces, run_mano, run_mano_left | |
from lib.eval_utils.custom_utils import load_slam_cam | |
from lib.vis.run_vis2 import run_vis2_on_video, run_vis2_on_video_cam | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--img_focal", type=float) | |
parser.add_argument("--video_path", type=str, default='example/video_0.mp4') | |
parser.add_argument("--input_type", type=str, default='file') | |
parser.add_argument("--checkpoint", type=str, default='./weights/hawor/checkpoints/hawor.ckpt') | |
parser.add_argument("--infiller_weight", type=str, default='./weights/hawor/checkpoints/infiller.pt') | |
parser.add_argument("--vis_mode", type=str, default='world', help='cam | world') | |
args = parser.parse_args() | |
start_idx, end_idx, seq_folder, imgfiles = detect_track_video(args) | |
frame_chunks_all, img_focal = hawor_motion_estimation(args, start_idx, end_idx, seq_folder) | |
hawor_slam(args, start_idx, end_idx) | |
slam_path = os.path.join(seq_folder, f"SLAM/hawor_slam_w_scale_{start_idx}_{end_idx}.npz") | |
R_w2c_sla_all, t_w2c_sla_all, R_c2w_sla_all, t_c2w_sla_all = load_slam_cam(slam_path) | |
pred_trans, pred_rot, pred_hand_pose, pred_betas, pred_valid = hawor_infiller(args, start_idx, end_idx, frame_chunks_all) | |
# vis sequence for this video | |
hand2idx = { | |
"right": 1, | |
"left": 0 | |
} | |
vis_start = 0 | |
vis_end = pred_trans.shape[1] - 1 | |
# get faces | |
faces = get_mano_faces() | |
faces_new = np.array([[92, 38, 234], | |
[234, 38, 239], | |
[38, 122, 239], | |
[239, 122, 279], | |
[122, 118, 279], | |
[279, 118, 215], | |
[118, 117, 215], | |
[215, 117, 214], | |
[117, 119, 214], | |
[214, 119, 121], | |
[119, 120, 121], | |
[121, 120, 78], | |
[120, 108, 78], | |
[78, 108, 79]]) | |
faces_right = np.concatenate([faces, faces_new], axis=0) | |
# get right hand vertices | |
hand = 'right' | |
hand_idx = hand2idx[hand] | |
pred_glob_r = run_mano(pred_trans[hand_idx:hand_idx+1, vis_start:vis_end], pred_rot[hand_idx:hand_idx+1, vis_start:vis_end], pred_hand_pose[hand_idx:hand_idx+1, vis_start:vis_end], betas=pred_betas[hand_idx:hand_idx+1, vis_start:vis_end]) | |
right_verts = pred_glob_r['vertices'][0] | |
right_dict = { | |
'vertices': right_verts.unsqueeze(0), | |
'faces': faces_right, | |
} | |
# get left hand vertices | |
faces_left = faces_right[:,[0,2,1]] | |
hand = 'left' | |
hand_idx = hand2idx[hand] | |
pred_glob_l = run_mano_left(pred_trans[hand_idx:hand_idx+1, vis_start:vis_end], pred_rot[hand_idx:hand_idx+1, vis_start:vis_end], pred_hand_pose[hand_idx:hand_idx+1, vis_start:vis_end], betas=pred_betas[hand_idx:hand_idx+1, vis_start:vis_end]) | |
left_verts = pred_glob_l['vertices'][0] | |
left_dict = { | |
'vertices': left_verts.unsqueeze(0), | |
'faces': faces_left, | |
} | |
R_x = torch.tensor([[1, 0, 0], | |
[0, -1, 0], | |
[0, 0, -1]]).float() | |
R_c2w_sla_all = torch.einsum('ij,njk->nik', R_x, R_c2w_sla_all) | |
t_c2w_sla_all = torch.einsum('ij,nj->ni', R_x, t_c2w_sla_all) | |
R_w2c_sla_all = R_c2w_sla_all.transpose(-1, -2) | |
t_w2c_sla_all = -torch.einsum("bij,bj->bi", R_w2c_sla_all, t_c2w_sla_all) | |
left_dict['vertices'] = torch.einsum('ij,btnj->btni', R_x, left_dict['vertices'].cpu()) | |
right_dict['vertices'] = torch.einsum('ij,btnj->btni', R_x, right_dict['vertices'].cpu()) | |
# Here we use aitviewer(https://github.com/eth-ait/aitviewer) for simple visualization. | |
if args.vis_mode == 'world': | |
output_pth = os.path.join(seq_folder, f"vis_{vis_start}_{vis_end}") | |
if not os.path.exists(output_pth): | |
os.makedirs(output_pth) | |
image_names = imgfiles[vis_start:vis_end] | |
print(f"vis {vis_start} to {vis_end}") | |
run_vis2_on_video(left_dict, right_dict, output_pth, img_focal, image_names, R_c2w=R_c2w_sla_all[vis_start:vis_end], t_c2w=t_c2w_sla_all[vis_start:vis_end]) | |
elif args.vis_mode == 'cam': | |
output_pth = os.path.join(seq_folder, f"vis_{vis_start}_{vis_end}") | |
if not os.path.exists(output_pth): | |
os.makedirs(output_pth) | |
image_names = imgfiles[vis_start:vis_end] | |
print(f"vis {vis_start} to {vis_end}") | |
run_vis2_on_video_cam(left_dict, right_dict, output_pth, img_focal, image_names, R_w2c=R_w2c_sla_all[vis_start:vis_end], t_w2c=t_w2c_sla_all[vis_start:vis_end]) | |
print("finish") | |