Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,184 +1,34 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import random
|
| 4 |
-
|
| 5 |
-
import spaces #[uncomment to use ZeroGPU]
|
| 6 |
from diffusers import DiffusionPipeline
|
| 7 |
import torch
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
torch_dtype = torch.float16
|
| 14 |
-
else:
|
| 15 |
-
torch_dtype = torch.float32
|
| 16 |
-
|
| 17 |
-
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
| 18 |
-
pipe = pipe.to(device)
|
| 19 |
-
|
| 20 |
-
MAX_SEED = np.iinfo(np.int32).max
|
| 21 |
-
MAX_IMAGE_SIZE = 1024
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
@spaces.GPU #[uncomment to use ZeroGPU]
|
| 25 |
-
def infer(
|
| 26 |
-
prompt,
|
| 27 |
-
negative_prompt,
|
| 28 |
-
seed,
|
| 29 |
-
randomize_seed,
|
| 30 |
-
width,
|
| 31 |
-
height,
|
| 32 |
-
guidance_scale,
|
| 33 |
-
num_inference_steps,
|
| 34 |
-
progress=gr.Progress(track_tqdm=True),
|
| 35 |
-
):
|
| 36 |
-
# Seed Handling
|
| 37 |
-
if randomize_seed:
|
| 38 |
-
seed = random.randint(0, MAX_SEED)
|
| 39 |
-
|
| 40 |
-
generator = torch.Generator().manual_seed(seed)
|
| 41 |
-
|
| 42 |
-
# Generate Image
|
| 43 |
-
image = pipe(
|
| 44 |
-
prompt=prompt,
|
| 45 |
-
negative_prompt=negative_prompt,
|
| 46 |
-
guidance_scale=guidance_scale,
|
| 47 |
-
num_inference_steps=num_inference_steps,
|
| 48 |
-
width=width,
|
| 49 |
-
height=height,
|
| 50 |
-
generator=generator,
|
| 51 |
-
).images[0]
|
| 52 |
-
|
| 53 |
-
return image, seed
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
examples = [
|
| 57 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
| 58 |
-
"An astronaut riding a green horse",
|
| 59 |
-
"A delicious ceviche cheesecake slice",
|
| 60 |
-
]
|
| 61 |
-
|
| 62 |
-
css = """
|
| 63 |
-
/* CSS Styling (remains unchanged from earlier examples) */
|
| 64 |
-
"""
|
| 65 |
-
|
| 66 |
-
# Higher Defaults for Advanced Settings
|
| 67 |
-
DEFAULT_STEPS = 50
|
| 68 |
-
DEFAULT_GUIDANCE = 7.5
|
| 69 |
-
|
| 70 |
-
with gr.Blocks(css=css) as demo:
|
| 71 |
-
with gr.Column(elem_id="col-container"):
|
| 72 |
-
gr.Markdown("<div id='header'><h1 id='title'>Veshon: Veshup's Image Generation AI</h1><p id='subtitle'>Create stunning images with just a prompt. Powered by cutting-edge AI technology.</p></div>")
|
| 73 |
-
|
| 74 |
-
with gr.Row():
|
| 75 |
-
prompt = gr.Text(
|
| 76 |
-
label="Your Creative Prompt",
|
| 77 |
-
show_label=False,
|
| 78 |
-
max_lines=1,
|
| 79 |
-
placeholder="Enter your prompt here...",
|
| 80 |
-
container=False,
|
| 81 |
-
)
|
| 82 |
-
|
| 83 |
-
run_button = gr.Button("Generate Image", scale=0, variant="primary", elem_classes="gradio-button")
|
| 84 |
-
|
| 85 |
-
result = gr.Image(label="Generated Image", show_label=False)
|
| 86 |
-
|
| 87 |
-
with gr.Accordion("Advanced Settings", open=False):
|
| 88 |
-
negative_prompt = gr.Text(
|
| 89 |
-
label="Negative Prompt",
|
| 90 |
-
max_lines=1,
|
| 91 |
-
placeholder="Enter a negative prompt if needed",
|
| 92 |
-
visible=False,
|
| 93 |
-
)
|
| 94 |
-
|
| 95 |
-
seed = gr.Slider(
|
| 96 |
-
label="Seed",
|
| 97 |
-
minimum=0,
|
| 98 |
-
maximum=MAX_SEED,
|
| 99 |
-
step=1,
|
| 100 |
-
value=0,
|
| 101 |
-
)
|
| 102 |
-
|
| 103 |
-
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
| 104 |
-
|
| 105 |
-
with gr.Row():
|
| 106 |
-
width = gr.Slider(
|
| 107 |
-
label="Width",
|
| 108 |
-
minimum=256,
|
| 109 |
-
maximum=MAX_IMAGE_SIZE,
|
| 110 |
-
step=32,
|
| 111 |
-
value=768, # Higher default resolution
|
| 112 |
-
)
|
| 113 |
-
|
| 114 |
-
height = gr.Slider(
|
| 115 |
-
label="Height",
|
| 116 |
-
minimum=256,
|
| 117 |
-
maximum=MAX_IMAGE_SIZE,
|
| 118 |
-
step=32,
|
| 119 |
-
value=768, # Higher default resolution
|
| 120 |
-
)
|
| 121 |
-
|
| 122 |
-
with gr.Row():
|
| 123 |
-
guidance_scale = gr.Slider(
|
| 124 |
-
label="Guidance Scale",
|
| 125 |
-
minimum=0.0,
|
| 126 |
-
maximum=15.0,
|
| 127 |
-
step=0.1,
|
| 128 |
-
value=DEFAULT_GUIDANCE, # Higher guidance by default
|
| 129 |
-
)
|
| 130 |
-
|
| 131 |
-
num_inference_steps = gr.Slider(
|
| 132 |
-
label="Number of Inference Steps",
|
| 133 |
-
minimum=1,
|
| 134 |
-
maximum=150, # Increased maximum steps
|
| 135 |
-
step=1,
|
| 136 |
-
value=DEFAULT_STEPS, # Higher inference steps for quality
|
| 137 |
-
)
|
| 138 |
-
|
| 139 |
-
gr.Examples(examples=examples, inputs=[prompt])
|
| 140 |
-
gr.on(
|
| 141 |
-
triggers=[run_button.click, prompt.submit],
|
| 142 |
-
fn=infer,
|
| 143 |
-
inputs=[
|
| 144 |
-
prompt,
|
| 145 |
-
negative_prompt,
|
| 146 |
-
seed,
|
| 147 |
-
randomize_seed,
|
| 148 |
-
width,
|
| 149 |
-
height,
|
| 150 |
-
guidance_scale,
|
| 151 |
-
num_inference_steps,
|
| 152 |
-
],
|
| 153 |
-
outputs=[result, seed],
|
| 154 |
-
)
|
| 155 |
-
|
| 156 |
-
if __name__ == "__main__":
|
| 157 |
-
demo.launch()
|
| 158 |
-
import gradio as gr
|
| 159 |
-
import numpy as np
|
| 160 |
-
import random
|
| 161 |
-
|
| 162 |
-
import spaces #[uncomment to use ZeroGPU]
|
| 163 |
-
from diffusers import DiffusionPipeline
|
| 164 |
-
import torch
|
| 165 |
|
| 166 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 167 |
-
model_repo_id = "stabilityai/sdxl-turbo" # Replace
|
| 168 |
|
| 169 |
if torch.cuda.is_available():
|
| 170 |
torch_dtype = torch.float16
|
| 171 |
else:
|
| 172 |
torch_dtype = torch.float32
|
| 173 |
|
| 174 |
-
pipe = DiffusionPipeline.from_pretrained(
|
|
|
|
|
|
|
| 175 |
pipe = pipe.to(device)
|
| 176 |
|
| 177 |
MAX_SEED = np.iinfo(np.int32).max
|
| 178 |
MAX_IMAGE_SIZE = 1024
|
| 179 |
|
| 180 |
|
| 181 |
-
@spaces.GPU
|
| 182 |
def infer(
|
| 183 |
prompt,
|
| 184 |
negative_prompt,
|
|
|
|
| 1 |
+
import os
|
| 2 |
import gradio as gr
|
| 3 |
import numpy as np
|
| 4 |
import random
|
| 5 |
+
import spaces # ZeroGPU integration
|
|
|
|
| 6 |
from diffusers import DiffusionPipeline
|
| 7 |
import torch
|
| 8 |
|
| 9 |
+
# Get Hugging Face token from environment variable
|
| 10 |
+
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None
|
| 11 |
+
if not HF_TOKEN:
|
| 12 |
+
raise ValueError("Hugging Face token not found. Please set the 'HF_TOKEN' environment variable.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
+
model_repo_id = "stabilityai/sdxl-turbo" # Replace with the model you would like to use
|
| 16 |
|
| 17 |
if torch.cuda.is_available():
|
| 18 |
torch_dtype = torch.float16
|
| 19 |
else:
|
| 20 |
torch_dtype = torch.float32
|
| 21 |
|
| 22 |
+
pipe = DiffusionPipeline.from_pretrained(
|
| 23 |
+
model_repo_id, torch_dtype=torch_dtype, use_auth_token=HF_TOKEN
|
| 24 |
+
)
|
| 25 |
pipe = pipe.to(device)
|
| 26 |
|
| 27 |
MAX_SEED = np.iinfo(np.int32).max
|
| 28 |
MAX_IMAGE_SIZE = 1024
|
| 29 |
|
| 30 |
|
| 31 |
+
@spaces.GPU # ZeroGPU decorator
|
| 32 |
def infer(
|
| 33 |
prompt,
|
| 34 |
negative_prompt,
|