Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import numpy as np | |
import random | |
import spaces # ZeroGPU integration | |
from diffusers import DiffusionPipeline | |
import torch | |
# Get Hugging Face token from environment variable | |
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None | |
if not HF_TOKEN: | |
raise ValueError("Hugging Face token not found. Please set the 'HF_TOKEN' environment variable.") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model_repo_id = "CompVis/stable-diffusion-v1-4" # Replace with the model you would like to use | |
if torch.cuda.is_available(): | |
torch_dtype = torch.float16 | |
else: | |
torch_dtype = torch.float32 | |
pipe = DiffusionPipeline.from_pretrained( | |
model_repo_id, torch_dtype=torch_dtype, token=HF_TOKEN | |
) | |
pipe = pipe.to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
# ZeroGPU decorator | |
def infer( | |
prompt, | |
negative_prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
# Seed Handling | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
# Generate Image | |
image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator, | |
).images[0] | |
return image, seed | |
examples = [ | |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
"An astronaut riding a green horse", | |
"A delicious ceviche cheesecake slice", | |
] | |
css = """ | |
/* CSS Styling (remains unchanged from earlier examples) */ | |
""" | |
# Higher Defaults for Advanced Settings | |
DEFAULT_STEPS = 90 | |
DEFAULT_GUIDANCE = 10 | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown("<div id='header'><h1 id='title'>Veshon: Veshup's Image Generation AI</h1><p id='subtitle'>Create stunning images with just a prompt. Powered by cutting-edge AI technology.</p></div>") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Your Creative Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt here...", | |
container=False, | |
) | |
run_button = gr.Button("Generate Image", scale=0, variant="primary", elem_classes="gradio-button") | |
result = gr.Image(label="Generated Image", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Text( | |
label="Negative Prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt if needed", | |
visible=False, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=720, # Higher default resolution | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=720, # Higher default resolution | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=0.0, | |
maximum=15.0, | |
step=0.1, | |
value=DEFAULT_GUIDANCE, # Higher guidance by default | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of Inference Steps", | |
minimum=1, | |
maximum=150, # Increased maximum steps | |
step=1, | |
value=DEFAULT_STEPS, # Higher inference steps for quality | |
) | |
gr.Examples(examples=examples, inputs=[prompt]) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
], | |
outputs=[result, seed], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |