from huggingface_hub import InferenceClient
import gradio as gr
client = InferenceClient(
"mistralai/Mistral-7B-Instruct-v0.1"
)
def format_prompt(message, history):
prompt = ""
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response} "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(
prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(prompt, history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
return output
additional_inputs=[
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=256,
minimum=0,
maximum=1048,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
]
css = """
#mkd {
height: 200px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.ChatInterface(
generate,
additional_inputs=additional_inputs,
examples = [
["π Write a Python Streamlit program that shows a thumbs up and thumbs down button for scoring an evaluation. When the user clicks, maintain a saved text file that tracks and shows the number of clicks with a refresh and sorts responses by the number of clicks."],
["π Create a Pandas DataFrame and display it using Streamlit. Use emojis to indicate the status of each row (e.g., β
for good, β for bad)."],
["π Using Gradio, create a simple interface where users can upload a CSV file and filter the data based on selected columns."],
["π Implement emoji reactions in a Streamlit app. When a user clicks on an emoji, record the click count in a Pandas DataFrame and display the DataFrame."],
["π Create a program that fetches a dataset from Huggingface Hub and shows basic statistics about it using Pandas in a Streamlit app."],
["π€ Use Gradio to create a user interface for a text summarizer model from Huggingface Hub."],
["π Create a Streamlit app to visualize time series data. Use Pandas to manipulate the data and plot it using Streamlitβs native plotting options."],
["π Implement a voice-activated feature in a Gradio interface. Use a pre-trained model from Huggingface Hub for speech recognition."],
["π Create a search function in a Streamlit app that filters through a Pandas DataFrame and displays the results."],
["π€ Write a Python script that uploads a model to Huggingface Hub and then uses it in a Streamlit app."],
["π Create a Gradio interface for a clapping hands emoji (π) counter. When a user inputs a text, the interface should return the number of clapping hands emojis in the text."],
["π Use Pandas to read an Excel sheet in a Streamlit app. Allow the user to select which sheet they want to view."],
["π Implement a login screen in a Streamlit app using Python. Secure the login by hashing the password."],
["π€© Create a Gradio interface that uses a model from Huggingface Hub to generate creative text based on a userβs input. Add sliders for controlling temperature and other hyperparameters."]
]
)
gr.HTML("""