File size: 3,498 Bytes
6a83074
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8bd6a9
6a83074
 
 
 
 
 
 
 
b8bd6a9
 
 
 
 
 
 
 
 
 
 
6a83074
 
 
 
 
b8bd6a9
 
 
 
 
 
 
6a83074
b8bd6a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a83074
 
 
 
 
b8bd6a9
6a83074
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import argparse
import torch

from llava_llama3.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from llava_llama3.conversation import conv_templates, SeparatorStyle
from llava_llama3.model.builder import load_pretrained_model
from llava_llama3.utils import disable_torch_init
from llava_llama3.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path

from PIL import Image

import requests
from PIL import Image
from io import BytesIO
from transformers import TextStreamer
import base64

def load_image(image_file):
    if isinstance(image_file, str) and (image_file.startswith('http://') or image_file.startswith('https://')):
        response = requests.get(image_file)
        image = Image.open(BytesIO(response.content)).convert('RGB')
    elif isinstance(image_file, bytes):
        image = Image.open(BytesIO(image_file)).convert('RGB')
    else:
        image = Image.open(image_file).convert('RGB')
    return image


def chat_llava(args, image_file, text, tokenizer, model, image_processor, context_len, streamer=None):
    # Model
    disable_torch_init()

    conv = conv_templates[args.conv_mode].copy()
    roles = conv.roles
    
    inp = text

    if image_file is not None:
        print(image_file, type(image_file))
        image = load_image(image_file)
        print(image, type(image))
        image_size = image.size
        image_tensor = process_images([image], image_processor, model.config)
        if type(image_tensor) is list:
            image_tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor]
        else:
            image_tensor = image_tensor.to(model.device, dtype=torch.float16)
        
        if model.config.mm_use_im_start_end:
            inp = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + inp
        else:
            inp = DEFAULT_IMAGE_TOKEN + '\n' + inp

        conv.append_message(conv.roles[0], inp)
        conv.append_message(conv.roles[1], None)
        prompt = conv.get_prompt()

        input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
        stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
        keywords = [stop_str]

        with torch.inference_mode():
            output_ids = model.generate(
                input_ids,
                images=image_tensor,
                image_sizes=[image_size],
                do_sample=True if args.temperature > 0 else False,
                temperature=args.temperature,
                max_new_tokens=args.max_new_tokens,
                streamer=streamer,
                use_cache=True)
    else:
        conv.append_message(conv.roles[0], inp)
        conv.append_message(conv.roles[1], None)
        prompt = conv.get_prompt()

        input_ids = tokenizer(prompt, return_tensors='pt').input_ids.to(model.device)
        
        with torch.inference_mode():
            output_ids = model.generate(
                input_ids,
                do_sample=True if args.temperature > 0 else False,
                temperature=args.temperature,
                max_new_tokens=args.max_new_tokens,
                use_cache=True)

    outputs = tokenizer.decode(output_ids[0]).strip()
    conv.messages[-1][-1] = outputs

    # Return the model's output as a string
    # return outputs
    return outputs.replace('<|end_of_text|>', '\n').lstrip()